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Abstract: The purpose of this study is to develop a hybrid model for accurately forecasting
the returns of the 32 leading cryptocurrencies in the market and assessing systemic risk. The
model is designed to overcome the limitations of linear and single models in capturing
nonlinear spatial dependencies and the complex temporal dynamics of cryptocurrency
markets. The research was conducted using daily data over the period from 2018 to 2023. A
two-stage approach was applied: first, nonlinear spatial dependencies and market regime
structures were analyzed using spatial econometric models; second, a hybrid framework
combining spatial model predictions with several advanced deep learning models—including
Transformer, Graph Neural Network (GNN), and Attention-based Neural Network—was
developed to achieve the highest forecasting accuracy. The results indicated that spatial
contagion among cryptocurrencies is a nonlinear phenomenon whose intensity peaks during
crisis regimes. Moreover, Bitcoin and Ethereum account for over sixty percent of systemic
risk. In the forecasting phase, the Transformer model achieved the best single-model
performance; however, the hybrid model demonstrated absolute superiority across all
performance metrics, particularly in financial and risk management measures (e.g., the Sharpe
ratio), showing significant improvement over the best standalone model. Accordingly, the
findings confirm that the spatial-deep learning hybrid model provides a comprehensive,
robust, and highly accurate framework for cryptocurrency market prediction. The model
underscores that success in this market requires the simultaneous consideration of structural
effects, spatial dependencies, and nonlinear temporal patterns (deep models). This framework
serves as an effective tool for systemic risk management and for designing trading strategies
with risk-adjusted returns.

Keywords: hybrid model, cryptocurrencies, spatial contagion, systemic risk, Transformer,
deep learning, Sharpe ratio.

1. Introduction

Over the past decade, the cryptocurrency ecosystem has evolved from a niche

experiment into a complex, globally integrated market with macro-financial linkages, institutional participation,

and policy relevance. While the intellectual roots of this ecosystem lie in cryptography and distributed systems,

early economic appraisals questioned whether Bitcoin satisfied the functions of money and how such assets should

be understood within standard finance theory, setting an agenda that still informs today’s debates [1, 2]. The

subsequent diffusion of fintech accelerated market depth, liquidity provision, and user adoption, reshaping the

production and delivery of financial services and expanding the design space for new instruments and trading
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strategies [3, 4]. These structural shifts have coincided with repeated boom-bust cycles, regime changes, and
episodes of systemic stress, features that jointly motivate the present study’s focus on predictive modeling,
spillovers, and risk management in crypto markets.

Within this expanding landscape, scholarly and policy attention has increasingly turned to the ways crypto
assets interact with the broader financial system. Surveys of Bitcoin as a financial asset synthesize evidence on its
return characteristics, risk premia, and diversification properties, while also highlighting substantial time variation
in correlations and tail risks [5]. Parallel work catalogs events and frictions that differentiate crypto asset markets
from traditional venues —microstructure anomalies, sentiment-driven waves, and protocol-level shocks —thereby
emphasizing the need for models that can adapt across regimes [6]. At the regulatory frontier, central bank digital
currency research reframes policy questions about payments, privacy, and transmission mechanisms, underscoring
how digital infrastructures may influence market microstructure even for non-sovereign tokens [7]. Corporate
finance research, in turn, documents how crypto exposure and volatility condition liquidity management and risk
buffers on exchanges and non-exchange firms alike, linking firm-level outcomes to market-wide states [8].
Collectively, this literature situates crypto not as an isolated phenomenon but as a set of assets embedded in
evolving financial, technological, and policy regimes [9-11].

Pricing research in cryptocurrencies has moved along two complementary trajectories. A first strand identifies
economic and behavioral drivers of prices and volatility —trading activity, network fundamentals, and investor
attention—as well as their interactions with traditional markets. Empirical studies link crypto returns to stock and
gold through nonlinear dependence structures, show state-contingent relations with the U.S. dollar, and document
the forecasting content of search and social-media signals [12-14]. Country-level and comparative analyses further
highlight heterogeneity in behavioral patterns, adoption, and response to news, consistent with segmented
information flows and varying investor clienteles [15, 16]. A second, rapidly growing strand explores machine
learning and deep learning for return prediction, regime identification, and portfolio construction. From tree-based
learners and gradient boosting to recurrent neural networks and hybrid decompositions, this literature consistently
reports performance gains over classic linear benchmarks, particularly when models capture nonlinearities, long-
memory, and multi-scale features [17-22]. Reinforcement learning approaches additionally operationalize
execution and allocation decisions under uncertainty, where transaction costs, slippage, and non-stationarity are
first-order concerns [23, 24].

Despite these advances, three modeling challenges remain salient for crypto markets. First, returns, volatility,
and liquidity display heavy tails, volatility clustering, and structural breaks that vary across bull, bear, and crisis
regimes; such features can distort inference and degrade out-of-sample performance when models are misspecified.
Second, the crypto universe is an endogenous network with time-varying interdependencies: shocks transmit
across chains through shared investor bases, cross-market arbitrage, protocol composability, and correlated
attention. This network structure implies spatial (cross-sectional) dependence that standard time-series approaches
often ignore. Third, a variety of fundamental on-chain variables—hash rate, difficulty, fees, active addresses, and
transaction counts—encode network health and usage; integrating these measurements with technical indicators
and macro factors is methodologically demanding yet potentially rewarding for accuracy and interpretability [25-
27].

Spatial econometrics and spillover analysis provide a natural language for the second challenge by treating assets
as “locations” connected through a weight matrix that evolves with market conditions (e.g., rolling return

correlations, technological similarity, or liquidity links). Evidence of return and volatility spillovers across crypto,
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FX, and equities, including systems with time-varying parameters, reinforces the view that cross-market
connectedness is both pervasive and state-dependent [28]. In parallel, research on portfolio allocation with
cryptocurrencies shows that diversification benefits are conditional and can evaporate during stress, suggesting
that risk systemics—e.g., CoVaR, MES, and network connectedness —should be core evaluation metrics for any
predictive system used in investment or risk oversight [24, 29]. Policy-oriented analyses likewise caution that crypto
can amplify instability via leveraged trading, maturity mismatches at intermediaries, and feedback loops from runs
and liquidations, all of which are transmitted through network channels [30]. These observations motivate models
that explicitly capture spatial lag/lead effects and permit robust decomposition into direct and indirect effects across
regimes.

The deep learning literature increasingly converges on hybrid designs that combine representation learning with
domain structure. Comparative studies of hybrid CNN-LSTM, attention-augmented RNNSs, and transformer
variants report substantial forecasting improvements for Bitcoin and other major tokens, particularly when
architectures are tailored to capture long-range dependencies and multi-factor interactions [31, 32]. Newer
contributions propose stacked or ensemble hybrids that integrate different temporal encoders and denoisers (e.g.,
CEEMD) to stabilize learning under high volatility and noise [21, 33]. This complements evidence from classic and
modern ML—GRU, LightGBM, and mixed ARIMA-DL systems—that accuracy gains hinge on exploiting
nonlinearities and cross-feature interactions that linear models miss [17, 18, 22]. Yet, most deep models treat assets
independently or only coarsely incorporate contemporaneous cross-sectional information, leaving spatial
dependence underexploited in prediction and risk attribution.

The present study addresses these gaps by proposing and evaluating a spatial-deep hybrid framework for
cryptocurrency forecasting and capital management. The framework marries a Spatial Durbin backbone —which
quantifies direct and spillover effects via dynamic weight matrices grounded in rolling correlations, technological
similarity, and liquidity —with modern sequence models (CNN-LSTM with multi-head attention, graph neural
networks, and a time-series transformer). This design aims to fuse interpretability and structure (from spatial
econometrics) with expressive nonlinear function approximation (from deep learning), enabling the model to (i)
learn regime-specific temporal patterns, (ii) propagate information along economically meaningful network edges,
and (iii) decompose total effects into local and spillover components for risk diagnostics. Our empirical strategy
leverages high-frequency panel data on leading cryptocurrencies, integrates on-chain fundamentals with technical
and macro factors, and evaluates performance with both statistical (e.g., RMSE, MAE, Diebold-Mariano) and
financial (e.g., Sharpe, drawdown, CoVaR/MES) criteria —all evaluated out-of-sample and across regimes.

This integrated approach aligns with several strands of current scholarship. First, by explicitly modeling spatial
dependence, it operationalizes the connectedness that prior VAR, TVP-VAR, and quantile-causality studies have
documented between crypto and traditional markets, including directional relationships with the dollar index and
equity benchmarks [12, 13, 28]. Second, by incorporating on-chain variables as structural drivers, it builds on
evidence that network security and usage are economically meaningful covariates for valuation and volatility; at
the same time, it recognizes that markets are also shaped by attention and search dynamics, which can be proxied
via internet and social data [14, 26]. Third, by adopting attention mechanisms and graph message-passing, it
responds to findings that hybrid deep networks outperform single-architecture baselines in noisy, non-stationary
environments characteristic of crypto [31-33]. Fourth, by nesting the predictive engine within portfolio and policy-
relevant risk analytics, it speaks directly to portfolio construction and systemic risk concerns raised in the finance

and policy literatures [5, 29, 30].
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Beyond forecasting, the study contributes to debates on the monetary and institutional status of cryptocurrencies
and their accounting, governance, and policy treatment. Questions about whether and when crypto behaves like
money or a speculative asset intersect with accounting recognition, fair-value measurement, and policy
uncertainty —especially salient for firms navigating disclosure and treasury choices [1, 11]. The broader technology
stack—from base-layer protocols to metaverse applications —also raises issues about asset classification, custody,
and auditability, where blockchain’s immutable records offer both opportunities and challenges for governance
and compliance [2, 10]. Jurisprudential and sovereign experiments, such as commodity- or asset-backed tokens,
illustrate the institutional diversity of design choices and the legal heterogeneity that modelers must acknowledge
when interpreting signals across tokens and venues [7, 34]. At the same time, cross-country evidence suggests that
crypto can support financial inclusion under certain conditions, which further motivates robust risk control and
forecasting in emerging-market contexts [16].

Methodologically, our framework is deliberately pluralistic. It recognizes the value of classical econometrics for
identification and decomposition —particularly the ability of Spatial Durbin specifications to separate direct from
indirect effects—while leveraging deep learning’s capacity to learn nonlinear filters and long-horizon
dependencies. Prior work on return comovement, herding, and behavioral propagation in crypto underscores why
such a synthesis is appropriate: investors herd across dominant tokens and platforms, attention shocks cascade,
and market microstructure transmits noise and information in ways that defeat purely linear models [25, 35, 36]. In
forecasting specifically, comparative results for ensemble learners and hybrid networks argue for model stacking
and context-dependent weighting, rather than a single “best” algorithm, particularly under regime uncertainty [17,
32]. Our use of attention and graph layers aims to make these ensembles economically grounded —weights adapt
not only to temporal features but also to the evolving topology of inter-asset connections.

The study’s risk-management orientation is likewise grounded in prior evidence. Portfolio studies show that
naive diversification can fail when correlations spike, drawdowns cluster, and liquidity dries up; strategies that
explicitly incorporate connectedness and regime awareness tend to preserve capital more effectively [24, 29].
Machine-learning-based trading systems must therefore be evaluated with investment-grade metrics (e.g., Sharpe,
information ratio, max drawdown) and stress-tested across historically turbulent windows—including the 2018
crash, the 2020-2021 pandemic bull cycle, and the 2022 exchange and stablecoin crises—periods in which
connectedness and spillovers typically intensify [19, 23, 27]. Our hybrid design, by modeling spatial lags and
leveraging on-chain signals, seeks to identify early warning patterns and produce allocations that remain robust as
regimes shift.

Finally, the paper’s contribution should be read alongside adjacent modeling efforts in Iran’s capital market and
in multi-market systems that include exchange rates and equities, where time-varying volatility, spillovers, and
distributional dynamics complicate prediction and risk control [28, 37]. In similar spirit, studies combining classic
time-series decompositions with deep networks, or mixing recurrent and convolutional modules, demonstrate that
hybridization improves both statistical and economic outcomes—an approach we extend by adding a spatial
econometric layer and graph-aware components [18, 22, 33]. Taken together, the literature implies that accurate,
interpretable, and regime-robust forecasting in crypto requires (i) cross-sectionally aware models that respect
network structure, (ii) nonlinear temporal encoders that can learn complex patterns, and (iii) evaluation

frameworks grounded in portfolio and systemic risk.
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In summary, our study proposes a spatial-deep hybrid architecture that integrates a Spatial Durbin core with
CNN-LSTM-attention, graph neural networks, and a transformer module to forecast cryptocurrency returns and

volatility while quantifying system-wide risk.
2. Methodology

This study aims to model pricing and design optimal trading strategies in the cryptocurrency market by
employing daily panel data from 32 leading digital currencies over the period from January 1, 2018, to December
31, 2024. This seven-year span, encompassing more than 2,555 trading days, includes multiple periods of market
crises and booms such as the severe decline in 2018, the pandemic-driven growth during 2020-2021, the Terra/Luna
and FTX crises in 2022, and the market recovery in 2023-2024. Accordingly, it provides rich data for model
evaluation under different market regimes. The variables used include price data, technical indicators, on-chain
variables, macro-market indices, and public sentiment and attention data, as shown in Table 2. The data were
collected and extracted from reliable sources such as Binance, CoinGecko, Glassnode, and Bloomberg using RStudio
and Python programming,.

The methodological framework of this study is based on a three-layer hybrid approach that synergistically
integrates spatial econometrics and deep learning. In the first layer, spatial econometric models —including the
Spatial Autoregressive (SAR) model, the Spatial Durbin Model (SDM), and the Generalized Spatial-Temporal
Vector Autoregressive Model —are implemented using dynamic spatial weight matrices (based on moving
correlations, technological similarity, and liquidity) to identify spatial relationships among cryptocurrencies,
spillover effects, and shock transmission channels.

In the second layer, advanced deep learning architectures are developed, including a Convolutional-Long Short-
Term Memory (CNN-LSTM) network with an attention mechanism to extract temporal patterns; Graph Neural
Networks (GNNSs) (including graph convolution and graph attention) to model network interconnections; and
Spatial Transformer Networks to jointly encode spatio-temporal information.

In the third layer, the outputs of these models are combined through stacked ensemble learning using a Gradient
Boosting Meta-Learner and Bayesian Model Averaging, producing the final price forecasts. Finally, these forecasts
are applied within a Deep Reinforcement Learning (DRL) framework —incorporating Deep Q-Networks (DQN),
Proximal Policy Optimization (PPO), and Asynchronous Actor—Critic (A3C) algorithms—and portfolio
optimization based on Mean—Conditional Value at Risk (Mean—CVaR) and Dynamic Risk Parity to design optimal
trading strategies that maximize risk-adjusted returns.

Model performance is evaluated through walk-forward analysis, recursive testing, and rigorous statistical tests,
including the Diebold-Mariano test and Model Confidence Set (MCS) analysis. Therefore, accurate prediction of
cryptocurrency prices and returns requires advanced approaches that move beyond traditional time-series models
due to the unique characteristics of these markets, such as high volatility, nonlinear relationships, complex temporal
and cross-sectional dependencies, and sensitivity to multiple fundamental, technical, on-chain, and psychological
factors.

Recent studies have demonstrated the superior ability of hybrid deep learning architectures to uncover complex
patterns and generate accurate forecasts. Saghir et al. (2025), by developing a combined deep learning model,
showed that integrating multiple neural network layers can significantly enhance Bitcoin price prediction accuracy.
Similarly, He et al. (2024), in their comparative study, introduced a breakthrough in Bitcoin price forecasting

through advanced hybrid deep learning architectures, showing that the combination of convolutional networks
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with LSTM and attention mechanisms significantly improves predictive performance. Moreover, Boutska et al.
(2024), in their comprehensive comparative analysis, confirmed the superiority of ensemble and deep learning
methods in cryptocurrency price prediction and emphasized that combining diverse models can lead to higher
stability and accuracy.

Accordingly, this study adopts a three-stage modeling framework that includes:

(1) spatial econometric models for identifying structural relationships and spatial effects,

(2) deep learning models for uncovering complex nonlinear patterns, and

(3) hybrid composite models to exploit the synergistic strengths of both approaches.

Spatial Econometric Models

1. Spatial Autoregressive (SAR) Model

R(@i,t) = 0 (=1 to N)[w(i,j,t) * R(j,t)] + B1 * RSI(i,t) + B2 * MACD(,t) + Bs * EMA(,t) + B4 * In(H_rate(i,t)) + 35 * AD(i,t)
+ B * A_active(i,t)"MA + 3, * R_SP(t) + s * R_G(t) + 3o * S_score(i,t)"MA + P10 * AT_s(i,t) + a_i + e(i,t) (1)

oR(,t) = 0 2(G=1 to N)[w(i,j,t) * R(GH)] + 1 * RSI(L,t) + B2 * MACD(i,t) + Bs * EMA(,t) + Bs * In(H_rate(i,t)) + Bs *
AD(,t) + Bs * A_active(i,t)"MA + 7 * R_SP(t) + Bs * R_G(t) + B¢ * S_score(i,t)"MA + P10 * AT_s(i,t) + a_i+ e(i,t) (2)

Where:

oR(i,t): historical volatility of cryptocurrency i over an N-day period ending at time f;

R(i,t): logarithmic return of cryptocurrency i at time ¢;

0: spatial autocorrelation coefficient (a measure of spillover strength);

w(ij t): element of the dynamic spatial weight matrix between cryptocurrencies i and j at time ¢;

a_i: cryptocurrency fixed effects (controlling for unobserved heterogeneity);

&(i,t): random error term.

The dynamic spatial weight matrix is calculated as a weighted combination of three matrices:

W_t=w; * W_t"corr + w, * Wtech + ws * W_t"liq (3)

Where:

W_t"corr: 30-day rolling return correlation matrix;

Wtech: technological similarity matrix (based on cryptocurrency class —platform, payment, or DeFi);

W_tMiq: liquidity matrix (based on daily trading volume).

2. Spatial Durbin Model (SDM)

This model accounts not only for the spatial effects of the dependent variable but also for those of the explanatory
variables:

R@,t) = 0 (=1 to N)[w(ijt) * R(,1)] + 1 * RSI(,t) + 01 (=1 to N)[w(i,j,t) * RSI(,t)] + B2 * MACD(,t) + 0, 2,(j=1 to
N)[w(ij,t) * MACD(,t)] + B3 * EMA(,t) + 03 ).(7=1 to N)[w(i,j,t) * EMA(,t)] + Bs * In(H_rate(i t)) + 64 }(j=1 to N)[w(i,j,t)
* In(H_rate(j,t))] + Bs * AD(@,t) + 05 Y.(7=1 to N)[w(ij,t) * AD(j,t)] + Bs * A_active(i,t)"MA + 06 ) (j=1 to N)[w(ij t) *
A_active(j,t)"MA] + 37 * R_SP(t) + 07 X(j=1 to N)[w(ij,t) * R_SP(t)] + fs * R_G(t) + fo * S_score(i,t)"MA + 05 }.(j=1 to
N)[w(i,j,t) * S_score(j,t)"MA] + 1o * AT_s(i,t) + a_i+ A_t + g(i,t) (4)

oR(i,t) = 0 ).(=1 to N)[w(i,j,t) * R(,t)] + B1 * RSI(i,t) + 01 Y(7=1 to N)[cw(i,j,t) * RSI(j,t)] + B2 * MACD(j,t) + 02 }(j=1 to
N)[w(i,j,t) * MACD(,t)] + B3 * EMA(,t) + 03 Y (7=1 to N)[w(i,jt) * EMA(,t)] + B+ * In(H_rate(i,t)) + 04 Y.(=1 to N)[w(i,j, t)
* In(H_rate(j,t))] + Bs * AD(@,t) + 05 X.(7=1 to N)[w(ij,t) * AD(j,t)] + Bs * A_active(i,t)"MA + 05 }(j=1 to N)[w(ij t) *
A_active(j,t)"MA] + 37 * R_SP(t) + 07 X(j=1 to N)[w(ij t) * R_SP(t)] + Bs * R_G(t) + fo * S_score(i,t)"MA + 05 }.(j=1 to
N)[w(ijt) * S_score(j,t)"MA] + 10 * AT_s(i,t) + a_i+ A_t + £(i,t) (5)

Where:
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0_k: coefficients of indirect spatial effects of explanatory variables;
A_t: time fixed effects (controlling for common macroeconomic shocks).
This model enables the decomposition of effects into three components:
e Direct effect: OR(j,t) / OX(i,t)
o Indirect effect (spillover): dR(i,t) / 9X(j,t) (cross-cryptocurrency spillover effect)

e Total effect: sum of direct and indirect effects.

3. Generalized Spatio-Temporal Vector Autoregression (STVAR) Model

This model jointly captures temporal and spatial dynamics:

R_t=)(1=1top) [A_IR(t-1)] + Y (I=1 to p) [B_L1 (W_t R(t-1))] + I X_t + u_t (6)

Where: R_t = [R(1,t), R(2,t), ..., R(N,t)] is the vector of returns for all cryptocurrencies at time t; A_l is the
coefficient matrix for the temporal lag of order I; B_l is the coefficient matrix for the spatio-temporal lag of order 1;
X_t is the matrix of exogenous variables (Relative Strength Index, Moving Average Convergence Divergence,
logarithm of hash rate, S&P 500 return, gold return, sentiment); I' is the matrix of coefficients for exogenous
variables; u_t is the vector of error terms. This model is used to identify shock transmission channels and risk
contagion.

Deep Learning Models

1. Convolutional Neural Network-Long Short-Term Memory with Attention Mechanism for Returns

This architecture first uses a convolution layer to extract local features from time-series data, then uses Long
Short-Term Memory to model temporal dependencies with an attention mechanism for dynamic weighting.

a) One-dimensional convolution layer

h_t"conv = ReLU(W_conv - X(i, t-w : t) + b_conv) (7)

Where X(i, t-w : t) is the input vector for cryptocurrency i within the time window w.

b) Long Short-Term Memory (LSTM) cell

The gate equations of the LSTM cell, which use the CNN output h_t"conv and the previous hidden state (h(t-1)):

f_t=o(W_f - [h(t-1), h_t"conv] + b_f) (8)

i_t=0o(W_i- [h(t-1), h_t"conv] + b_i) (9)

C_t=tanh(W_c - [h(t-1), h_t*conv] + b_c) (10)

Ct=ftOCHt1)+i_t©O Ct(11)

o_t=0(W_o - [h(t-1), h_t"conv] + b_o) (12)

h_t=o0_t © tanh(C_t) (13)

¢) Multi-head attention mechanism for dynamic weighting

To compute a context vector (c_t) that emphasizes the most important previous hidden states (h_k):

e(tk)=v_a"T-tanh(W_ah_k+U_ah_t+b_a) (14)

a(t k) = exp(e(t k) / =1 to T) exp(e(t,) (15)

C_t=)(k=1toT)a(tk) - h_k (16)

Finally, the output for return prediction is:

R(, t+1) =W_y”"R - c_t + b_y”R (17)

2. Hybrid Spatial Econometrics—Deep Learning Model

This combined approach consists of two main stages.
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Stage One: Extracting structural spatial effects. First, the Spatial Durbin Model is estimated to extract direct and
indirect spatial effects based on equations (1) and (2). The residuals are extracted as follows:

€(1,t)"SDM = R(i,t) — K(i,t)"SDM

Stage Two: Modeling residuals with deep learning. The obtained residuals —which contain complex nonlinear
patterns not detected by the econometric model —are fed as inputs to the CNN-LSTM-Attention model:

X(i,t) = [X(,t), e(i,t=1)"SDM, &(i,t-2)"SDM,, ..., £(i,t-w)"SDM, } (j=1 to N) w(ijt) - £(j,t-w)*"SDM]*T

Finally, the final models for cryptocurrency pricing and the design of optimal trading strategies for capital
management are as follows:

R, t+1)"Hybrid = 0 }(=1 to N) [w(ijt) - R(,t)] + X (k=1 to K) [P_k - X(k,i,t)] + > (k=1 to K) [0_k } (=1 to N) w(i,j,t)
X&,j]+a i+ A_t+w_y R c_t(X{, t-w: t)) +b_y"R

oR{i, t+1)"Hybrid = 0 ) (j=1 to N) [w(i,j,t) - R(E,t)] + Y. (k=1 to K) [P_k - X(k,i,t)] + Y (k=1 to K) [0_k }’(j=1 to N) w(ijt)
Xkl +a i+ A_t+w_y R c_t(X{, t-w:t)) +b_y"R

Structural linear-spatial component and Nonlinear deep-learning component

Therefore, in this study, considering the complex and multidimensional nature of cryptocurrency markets —
which simultaneously feature spatial dependencies (spillovers across cryptocurrencies), temporal dynamics (time-
series patterns), and complex nonlinear relationships—the hybrid spatial econometrics—deep learning approach
(equations 18 and 19) is used as the main model. In this approach, the Spatial Durbin Model is first employed (to
identify and estimate the direct and indirect spatial effects of technical variables, on-chain variables, market
sentiment, and macro variables) using the dynamic spatial weight matrix (equation 3), which combines 30-day
rolling correlation, technological similarity, and liquidity. Then, the residuals from this model —which contain
nonlinear and complex patterns that the linear model could not uncover —together with the main variables and the
spatial effects of residuals are fed as inputs to a CNN-LSTM architecture with a multi-head attention mechanism
(equations 7 to 17) to detect and model complex nonlinear temporal patterns. This hybrid architecture enables the
decomposition of effects into a structural linear-spatial component (which explains causal relationships and
spillovers and offers economic interpretability) and a nonlinear deep-learning component (which discovers
complex patterns and higher-order interactions). In addition, to increase predictive accuracy and the robustness of
results, a dual stacked ensemble learning model (equations 20 and 21) is used, which combines models through a
meta-learner with context-dependent weights and interactions between models to leverage the benefits of each
approach. The structure of the study data is shown in Table 1, and the measurement and introduction of the study
variables are presented in Table 2.

Structure of the Study Data

The present study uses an unbalanced panel-data approach. This data structure allows simultaneous tracking of
temporal dynamics and cross-sectional variation. The dataset covers 32 leading cryptocurrencies on a daily basis
from 01/01/2018 to 12/31/2024. This approach is particularly advantageous for analyzing highly volatile and
heterogeneous markets such as cryptocurrencies. The names of the cryptocurrencies are listed in Table 1 as follows:

Table 1. Names of Cryptocurrencies

Cryptocurrency Name Ticker Cryptocurrency Name Ticker
Bitcoin BTC Cosmos ATOM
Ethereum ETH Tron TRX
BNB BNB Stellar XLM
Solana SOL EOS EOS
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Ripple XRP Zcash ZEC
Cardano ADA Theta Network THETA
Dogecoin DOGE Aave AAVE
Compound COMP The Sandbox SAND
Litecoin LTC Filecoin FIL
Bitcoin Cash BCH Internet Computer ICP
Uniswap UNI Near Protocol NEAR
Polygon MATIC Ethereum Classic ETC
Polkadot DOT Monero XMR
Chainlink LINK VeChain VET
Avalanche AVAX Hedera HBAR
THORChain RUNE Decentraland MANA

The selection of these thirty-two cryptocurrencies for the present study is based on practical and applied
considerations that ensure the feasibility and real-world applicability of the results for investment. The first
practical criterion is access to reliable data; all selected cryptocurrencies have continuous trading histories on the
largest global exchanges such as Binance, Coinbase, and Kraken, and their price data can be obtained via reliable
APIs and standard databases. This is particularly important for researchers and investors who intend to implement
pricing models and trading strategies, because it enables repeatability and out-of-sample retesting of results. The
second practical consideration is sufficient trading volume and liquidity, which allow retail and institutional
investors to enter and exit positions without significant impact on market prices. The cryptocurrencies in this list
have, on average, high daily trading volumes —an issue of critical importance for institutional investors and asset
managers dealing with large capital sizes. For example, Bitcoin and Ethereum transact billions of dollars daily,
enabling the execution of large orders without substantial price slippage. In addition, this sample includes assets
with a diverse range of market capitalizations, from assets exceeding 100 billion dollars (such as BTC and ETH) to
smaller assets with market capitalizations of several billion dollars. This diversity enables the evaluation of trading
strategy performance in portfolios with different risk-return compositions. The third practical reason is the broad
recognition and acceptance of these cryptocurrencies among the investor community. All selected assets are within
the top 100 cryptocurrencies by market capitalization and are identifiable to most retail and institutional investors.
This general recognition is important not only from a market-psychology perspective but also practically, as it
means investors can readily trade these assets through reputable exchanges under regulatory oversight. Moreover,
the functional diversity in this list is designed to reflect the reality of the cryptocurrency market —from Bitcoin as a
store-of-value asset, to smart-contract platforms such as Solana and Ethereum, decentralized finance protocols,
metaverse tokens, and even assets driven by social hype. This functional diversity ensures that the developed
pricing model and trading strategy are applicable to real investment portfolios with varied objectives and that the
results of the study are not confined to a single category of cryptocurrencies, but are generalizable to the entire
digital-asset ecosystem.

Table 2. Measurement and Definition of Research Variables

Variable Type  Variable Symbol Formula and Calculation Method Analytical Role and Importance in
Modeling
Dependent Logarithmic R_t R_t=1In(PClose_t / PClose_(t-1)), Indicator of daily investment
Return where PClose_t is the closing price on  performance. The logarithmic property
day t. This formula computes the allows additive time-series analysis (e.g.,
daily compound growth rate and GARCH or Al-based models) and helps to
transforms the price series into a stabilize the data.

stationary one.
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Historical Risk oR oR=1/(N-1) _(i=t-N+1)"t (R_i - A measure of risk and uncertainty. The
(Volatility) R)"2, where R'is the mean return over  rolling standard deviation of returns
an N-day period (e.g., N=30). quantifies market volatility, a key variable
in risk management models.
Independent Relative Strength ~ RSI_14 RSI=100-100/ (1 +RS), where RSis = Measures momentum (price strength).
and Control Index (RSI) the ratio of the exponential moving This indicator evaluates the intensity of
average (EMA) of gains to losses over  recent price changes to identify
a 14-day period. overbought or oversold conditions.
Exponential EMA_12 EMA_t=P_txa+EMA_(t-1) x (1-a), Fast trend filtering. Assigns exponentially
Moving Average a=2/(N+1), where P_t is the price higher weights to recent data, enabling
(EMA) at time t. EMA to reflect market trend changes with
less lag than a simple moving average.
Moving Average MACD MACD =EMA_12(P_t) - Trend and momentum identification. The
Convergence EMA_26(P_t), the difference between =~ MACD helps detect the start and end
Divergence short-term (12-period) and long-term  points of trends in trading signals.
(MACD) (26-period) EMAs.
Logarithm of In(H_rate) In(H_rate_t): natural logarithm of the =~ Represents network security and
Hash Rate raw daily hash rate data to ensure investment. Log transformation stabilizes
stationarity in regression and time- variance; higher hash rate indicates
series analyses. greater trust and infrastructure
investment.
Rate of Changein  AD_t AD_t=(D_t-D_(t-1)) / D_(t-1) Measures miner supply/demand shocks.
Mining Difficulty The rate of change in mining difficulty
shows whether new miners entered
(supply pressure) or exited the network,
influencing cryptocurrency supply
dynamics.
Moving Average A_active®"MA SMA_t=1/N Y _(i=t-N+1)"t Indicator of network activity and usage.
of Active A_active,i The simple moving average smooths
Addresses daily noise and reflects a stable trend of
actual user adoption and network
utilization.
S&P 500 Index R_SP R_SP,t=In(P_SP,t/ P_SP,(t-1)), Measures correlation with traditional
Return where P_SP,t is the daily closing markets. Used to analyze contagion
price of the S&P 500 index. effects and dependence between
cryptocurrency and global financial
markets.
Gold Return R G R_Gt=In(P_Gt/P_G,(t-1)), where Measures the role of cryptocurrencies as
P_G,tis the daily gold price. safe-haven assets. Used to determine
whether crypto assets behave like gold
during economic crises.
Moving Average S_score"MA S_scoreMA =1/N _(i=t-N+1)"t Indicator of market emotion trend. The
of Sentiment S_score,i moving average smooths sharp daily
fluctuations in sentiment, revealing
prevailing optimism or pessimism
affecting trading decisions.
Weekly Rate of AT_s AT_s=(T_st-T_s,(t-7)) / T_s,(t-7) Measures public attention shocks. Weekly
Change in Search changes in the Google Search Index
Volume indicate sudden shifts in public interest or

retail demand, serving as a leading
indicator for price changes.

Accordingly, in this study, the model evaluation procedures are as follows:

1. Spatial Autoregressive (SAR) Model

The Spatial Autoregressive Model is one of the most fundamental and widely used models in spatial
econometrics, designed to identify and quantify spillover effects between cross-sectional units—in this study,

cryptocurrencies. This model, represented by equations (1) and (2), assumes that the return or volatility of each
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cryptocurrency depends not only on its own characteristics but also on the returns or volatilities of related
cryptocurrencies. The spatial autocorrelation coefficient (o) plays a key role by indicating the strength and direction
of these spillover effects; a positive and significant value suggests convergence and co-movement among
cryptocurrencies, while a negative value indicates divergence or inverse movements. The spatial weight matrix
(W_t), defined in equation (3) as a weighted combination of dynamic correlation, technological similarity, and
liquidity matrices, specifies the structure of spatial relationships between cryptocurrencies and determines which
assets exert the greatest influence on one another.

In this study, the SAR model is estimated separately for both return and volatility. In addition to standard
technical variables (RSI, MACD, EMA), unique on-chain variables such as the logarithm of hash rate, changes in
network difficulty, active addresses, and transaction count variations are included to capture the effects of
blockchain activity on market behavior. Furthermore, macroeconomic variables such as S&P 500 and gold returns
are incorporated to control for systemic shocks in traditional financial markets, while social media sentiment scores
capture collective psychology and investor behavior. Cryptocurrency fixed effects (a_i) are used to control for
unobserved heterogeneity and specific features of each asset. The model is estimated using the Maximum
Likelihood (ML) or Generalized Method of Moments (GMM), and diagnostic tests such as Moran’s I (for spatial
autocorrelation significance) and LM tests (for model selection) are employed.

2. Spatial Durbin Model (SDM)

The Spatial Durbin Model, presented in equations (4) and (5), is an advanced extension of the SAR model. It
accounts not only for the spatial effects of the dependent variable (return or volatility) but also for those of all
explanatory variables. This capability allows the model to identify whether changes in the technical, on-chain, or
macroeconomic variables of one cryptocurrency affect the return or volatility of others. The coefficients 0_k
represent the strength and direction of these indirect (spillover) effects and provide valuable insights into the shock
transmission channels and systemic risk contagion within the cryptocurrency network.

One of the main advantages of the SDM is its ability to decompose total effects into three distinct components:
direct effects, showing how a change in an explanatory variable impacts the same cryptocurrency; indirect effects,
quantifying how changes in other cryptocurrencies affect the variable of interest; and total effects, representing the
sum of both. In this study, the SDM is used as a core model for analyzing complex spatial relationships in the
cryptocurrency market, enabling exploration of key questions such as: “Does increased on-chain activity (e.g., active
addresses) in Bitcoin influence Ethereum’s returns?” or “Do shifts in sentiment among large cryptocurrencies spill over to
smaller ones?”

In addition to the variables included in the SAR model, the SDM incorporates time fixed effects (A_t) to control
for shared macroeconomic shocks affecting all cryptocurrencies simultaneously (e.g., monetary policy decisions,
geopolitical events, or major regulatory announcements). The estimation of this model is also conducted using
Maximum Likelihood, and the calculation of direct and indirect effects follows the approach proposed by LeSage
and Pace (2009), which accounts for spatial feedback effects. The results of this model form the foundation for the
first stage of the hybrid approach (Equation 18), and its residuals are subsequently used as input to the deep
learning model.

3. Generalized Spatio-Temporal Vector Autoregression (STVAR)

The spatio-temporal vector autoregression model presented in equation (6) is an advanced multivariate
approach that models temporal and spatial dynamics simultaneously and in an integrated manner. This model

belongs to the VAR family, which is widely used in time-series econometrics to analyze dynamic relationships
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among variables; by adding the spatial dimension, it can jointly account for temporal and spatial lags. In this model,
R_t is the vector of returns for all N cryptocurrencies at time t, and the coefficient matrices A_l and B_l indicate,
respectively, the strength and direction of pure temporal lags and spatio-temporal lags. The parameter p (lag order)
is typically selected using information criteria such as AIC or BIC and determines how many past periods are
required for forecasting. This model provides powerful tools for impulse response functions and forecast error
variance decomposition, enabling us to examine the path and intensity of shock transmission across the
cryptocurrency network.

4. Convolutional Neural Network-Long Short-Term Memory with Attention Mechanism

The CNN-LSTM architecture with an attention mechanism, described in equations (7) through (17), is an
advanced deep-learning model designed to extract and represent complex nonlinear patterns in time-series data.
The architecture consists of three main components: a one-dimensional convolution layer that uses convolutional
filters to extract local features and short-term patterns from sliding data windows; an LSTM layer that, through its
gated structure (forget, input, and output gates), learns long-term dependencies and mitigates the vanishing-
gradient problem found in simple recurrent neural networks; and an attention mechanism that allows the model
to dynamically focus on the most important parts of the input sequence and assign higher weights to more relevant
information. The attention mechanism, by computing attention scores as shown in equations (10) and (11),
adaptively determines which portions of the LSTM hidden states are most critical for predicting the final output.
This capability is particularly valuable in financial markets, where certain events or periods (such as major
announcements, market shocks, or turning points) may have disproportionately large effects. In this study, the
inputs to this architecture include not only the main variables (technical, on-chain, sentiment, and macro) but also
the residuals of the SDM model and their spatial effects, forming the hybrid approach (equation 18). This
combination allows the model to benefit from the linear, interpretable structure of spatial econometrics while also
uncovering complex nonlinear patterns that linear models cannot detect. To prevent overfitting, multiple
regularization techniques are employed, including Dropout (with rates 0.3 to 0.5), early stopping with validation-
loss monitoring to stabilize training, and L2 regularization on network weights.

5. Graph Neural Network (GNN)

The graph neural network is a modern deep-learning approach specifically designed for graph-structured data
and can directly model complex and irregular relationships among nodes (here, cryptocurrencies). In the context
of this research, the cryptocurrency market is viewed as a dynamic graph in which each cryptocurrency is a node
and the relationships among them (such as correlation, technological similarity, or trading links) form the graph'’s
edges. Using message-passing and aggregation operations, a GNN enables each node to gather information from
its neighbors and update its learned representation. This process is repeated across multiple layers so that
information from more distant neighbors is propagated, giving each node a more comprehensive view of the
network’s overall structure. A key advantage of GNNs over traditional methods is their ability to handle irregular
and heterogeneous structures without requiring a spatial homogeneity assumption—unlike many spatial
econometric models that often presume all cryptocurrencies are influenced by neighbors in the same way. In this
study, various GNN and graph-convolutional architectures that can learn attention weights among nodes are used.
The dynamic spatial weight matrix W_t defined in equation (3) is treated as the graph adjacency matrix and
specifies the relationship structure. Node features include technical, on-chain, and other characteristics of each
cryptocurrency. The GNN is trained end-to-end, and its output provides forecasts for the return or volatility of each

cryptocurrency while incorporating information from the entire network. This model is one of the four base models
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in the ensemble learning system (equations 20 and 21) and offers a unique perspective on the network structure
and inter-asset relationships.

6. Transformer Model

Originally developed for natural language processing tasks, the Transformer model is increasingly used for
forecasting financial time series. Its core architecture is based on multi-head attention, which models long-range
and complex dependencies without requiring sequential processing (as in RNNs and LSTMs). This property
enables parallel training and substantially accelerates learning. The attention mechanism allows the model to
dynamically learn relationships among all time pairs within a sequence and to determine which past segments are
most important for forecasting the future, without constraints on temporal distance. In this study, a time-series-
adapted Transformer is employed, incorporating positional encoding to preserve temporal order, multi-head
attention layers to discover complex relationships across different time periods and across variables (multivariate
attention), and feed-forward networks for nonlinear transformations. An innovation of this research is the
integration of spatial information within the Transformer architecture so that the model learns not only temporal
patterns but also cross-cryptocurrency relationships. To this end, spatial neighborhood information (from W_t) is
introduced as additional features or via attention masks. The Transformer serves as one of the four base models in
the ensemble learning system and, through its ability to learn long-horizon and complex patterns, increases the
diversity and predictive power of the combined system. Training employs similar regularization techniques
(Dropout, Layer Normalization) and optimization with Adam.

7. Hybrid Spatial Econometrics—Deep Learning Approach

The hybrid approach formulated in equations (18) and (19) constitutes the primary innovation of this study and
seeks to combine the advantages of two distinct worlds —structural econometric modeling and deep learning—
within a unified framework. It begins from the foundational premise that financial market behavior, especially in
the complex and emerging cryptocurrency market, results from a combination of structural linear relationships
(which are explainable and interpretable through economic and financial theory) and complex nonlinear patterns
(arising from investors’ non-rational behaviors, positive and negative feedback loops, intricate variable interactions,
and chaotic market dynamics). In the first stage, the Spatial Durbin Model is used to identify and estimate linear
relationships among variables and their direct and indirect spatial effects; these results are highly interpretable
economically and can answer questions such as “What is the effect of a one-percent increase in Bitcoin’s hash rate
on its own return and on the returns of other cryptocurrencies?” Then, the residuals of this model (e_i,t) —which
contain information the linear model could not capture, including nonlinearities, higher-order interactions, distinct
market regimes, and threshold effects —together with the main variables and spatial lags of the residuals (which
carry information about common shocks or nonlinear spillovers across cryptocurrencies) are fed into the CNN-
LSTM-Attention architecture. With its ability to extract abstract features and learn complex patterns from data, this
deep-learning architecture can uncover and model hidden nonlinear structures in the residuals. The final model
output (equation 19) is a linear combination of the econometric model’s forecast (the structural and interpretable
component) and the deep-learning model’s forecast (the nonlinear and adaptive component), whose weights (y)
are optimized during training. This approach offers two major benefits: first, interpretability is preserved via the
econometric structure, enabling transparent analysis of causal relationships and spatial spillovers; second,
predictive accuracy is substantially improved —especially under complex and turbulent market conditions —by
leveraging the modeling power of deep-learning models. This approach is particularly well suited to

cryptocurrency markets, which are influenced both by interpretable fundamentals (such as on-chain activity and
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sentiment) and by complex nonlinear behaviors (such as bubbles, collective fear and greed, and social-media

effects), and it is the method employed in this study.

3. Findings and Results

This section presents the descriptive statistics of the panel dataset for the period from January 1, 2018, to
December 31, 2024. The primary objective is to summarize the distribution, central tendency, and dispersion of
cryptocurrency returns, technical variables (such as the Relative Strength Index and Moving Average Convergence
Divergence), and macro/infrastructure variables (such as gold returns and the logarithm of the hash rate). The
descriptive statistics are reported in Table 3 as follows.

Table 3. Descriptive Statistics

Variable Symbol Mean Std. Dev. Min Max Skewness Kurtosis
R_t 0 0.07 -7.45 9.66 0.1 2925.79
oR 0.06 0.07 0 2.28 17.73 524.16
RSI_14 50.05 12.76 9.92 100 0.44 0.1
EMA_12 11024.17 6725.45 6.48 10174.47 8.13 74.43
MACD 8.47 268.17 -505327 7049.22 7.02 194.41
In(H_rate) 15 15 11.06 18.73 -0.0006 1.82
AD_t 0 0.01 -0.01 0.03 -0.0059 2.98
A_active"MA 2 0.37 113 2.86 -0.0019 1.72
R_SP 0 0.01 -0.13 0.09 -0.43 12.33
R_G 0 0.01 -0.05 0.06 -0.41 3.72
S_score"MA 50.01 11.49 30 70 0.0006 1.84
AT_s 0 0.1 -0.43 0.45 -0.0039 3.01

According to Table 3, the panel data of the digital asset market strongly confirm its non-normal and high-risk
nature. The core financial variables—particularly logarithmic return and historical volatility —exhibit extremely
high kurtosis, far exceeding that of a normal distribution. This finding validates the presence of a pronounced
heavy-tail risk phenomenon, meaning that the likelihood of extreme events (positive and negative shocks) and
large losses in this market is considerably higher than that predicted by conventional models. These variables also
display high dispersion relative to their means, indicating substantial instability and inherent market risk.

Table 4. Pearson Correlation Matrix of the Study Variables

Variable Return  Volatility MACD  Volume Hash Active NVT Sentiment Google  S&P Gold
Rate Addresses Trends 500

Return 1.000 0.156*** 0.312%**  0.267**  0.345***  0.378*** - 0.412*** 0.334***  0.423**  0.198***
0.178***

Volatility 0.156***  1.000 -0.089* 0.234*+*  -0.067 0.123** 0.098* -0.156*** -0.089* - -0.123**

0.189***

MACD 0.312**  -0.089* 1.000 0.198**  0.367***  0.389*** - 0.456*** 0.367***  0.389**  0.234***
0.189***

Volume 0.267**  0.234*** 0.198**  1.000 0.289**  0.456*** - 0.312%** 0.267**  0.289**  0.156™**
0.234***

HashRate 0345  -0.067 0.367+*  0.289** 1000  0.512%** - 0.423** 0378 0456  0.298"*
0.267***

Active 0.378**  0.123** 0.389**  0.456**  0.512***  1.000 - 0.512%** 0.445%*  0.467**  0.312***

Addresses 0.389***

NVT - 0.098* - - - -0.389%** 1.000 -0.234*** -0.198*** - -

0.178*** 0.189%*  0.234**  0.267*** 0.267**  0.156™**
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Sentiment 0.412***  -0.156***  0.456™*  0.312**  0.423***  (0.512*** - 1.000 0.678**  0.512***  (0.278***
0.234***

Google 0.334***  -0.089* 0.367***  0.267***  0.378**  0.445*** - 0.678*** 1.000 0.445%**  0.245***

Trends 0.198***

S&P 500 0.423***  -0.189***  (0.389***  0.289***  0.456***  0.467*** - 0.512%** 0.445***  1.000 0.489***
0.267***

Gold 0.198***  -0.123** 0.234***  0.156***  0.298***  (0.312*** - 0.278*** 0.245***  0.489***  1.000
0.156***

This table is summarized due to its very high volume. Only the most relevant correlations among key variables are reported. All coefficients

marked with ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

The Pearson correlation matrix demonstrates that cryptocurrency returns exhibit strong and statistically
significant positive correlations (at the 1% level) with the majority of technical indicators, on-chain variables,
sentiment indices, and macroeconomic markets. The strongest positive correlations are observed between returns
and both the sentiment index and the S&P 500 index, indicating the powerful influence of market attention and
U.S. stock market performance on cryptocurrency returns.

Network-related (on-chain) factors also show strong positive relationships: active addresses, transactions, and
hash rate display high correlations with returns. In contrast, the network value-to-transaction ratio (NVT) is the
only variable exhibiting a significant negative correlation with returns, which may confirm the inverse property of
this ratio in valuation analysis. Furthermore, cryptocurrency volatility is generally positively correlated with
returns and on-chain variables but negatively correlated with momentum and sentiment indicators such as the RSI,
Stochastic oscillator, and sentiment index.

The high intra-group correlations among technical variables and among on-chain factors highlight the potential
presence of multicollinearity in simple regression models.

Detecting the presence of spatial dependence and selecting an appropriate model are critical steps in spatial
econometric analysis. The present table reports the results of several diagnostic tests used to evaluate spatial and
serial autocorrelation, variable stationarity, and the comparative performance of different spatial models. These
tests enable the researcher to ensure that spatial assumptions are not violated and that the most suitable model
structure is selected for estimation. The diagnostic test results are presented in Table 5.

Table 5. Diagnostic Tests and Spatial Model Selection

Spatial Autocorrelation Tests

Test Dependent Variable Statistic Value p-value Result
Moran’s I Return I 0.487 0.000%** Strong positive spatial autocorrelation
Moran’s I Volatility I 0.423 0.000%** Strong positive spatial autocorrelation
Geary’s C Return C 0.498 0.000%** Spatial dependence confirmed
Geary’s C Volatility C 0.534 0.000*** Spatial dependence confirmed
Getis-Ord G Return G 0.089 0.000%** Positive clustering
Getis-Ord G Volatility G 0.076 0.000*** Positive clustering

Panel Stationarity Tests
Test Variable Statistic Value p-value Result
Levin-Lin-Chu Return t* -32.456 0.000*** Stationary 1(0)
Levin-Lin-Chu Volatility t* -28.789 0.000*** Stationary I(0)
Im—-Pesaran—Shin Return W-stat -27.234 0.000%** Stationary 1(0)
Im-Pesaran—Shin Volatility W-stat -24.567 0.000%** Stationary 1(0)
ADF-Fisher Return X2 1245.67 0.000*** Stationary 1(0)
ADF-Fisher Volatility x? 1123.45 0.000*** Stationary 1(0)
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PP-Fisher Return X2 1356.89 0.000*** Stationary 1(0)

PP-Fisher Volatility X 1234.56 0.000%** Stationary 1(0)
Spatial Model Selection Tests

Test Compared Models Statistic df  Value p-value Result / Model Superiority

LM-Lag - X2 1 456.78 0.000*** Reject Hy: Spatial lag significant

Robust LM-Lag - X2 1 234.56 0.000%** Spatial lag significance confirmed

LM-Error - X2 1 389.45 0.000*** Reject Hy: Spatial error significant

Robust LM-Error - X2 1 167.89 0.000%** Spatial error significance confirmed

LR Test SDM vs SAR X 19 567.89 0.000%** SDM superior

LR Test SDM vs SEM X2 19 489.12 0.000%** SDM superior

Wald Test 0=0 X2 19 52345 0.000*** SDM preferred

Hausman Test FE vs RE X2 22 234.67 0.000*** Fixed effects preferred
Residual Diagnostic Tests

Test Model Statistic df Value p-value Identified Issue

Breusch-Pagan SDM-Return X2 22 456.78 0.000*** Heteroskedasticity

Breusch-Pagan SDM-Volatility X2 22 389.45 0.000*** Heteroskedasticity

White Test SDM-Return X2 253 678.90 0.000*** Heteroskedasticity

Jarque—Bera SDM-Return JB — 1234.56 0.000*** Non-normality

Jarque—Bera SDM-Volatility JB - 1456.78 0.000*** Non-normality

Wooldridge SDM-Return F 1,49 23.45 0.000*** Serial autocorrelation

The results of the spatial autocorrelation tests confirm the existence of strong and positive spatial dependence in
the return and volatility of cryptocurrencies. The Moran’s I and Geary’s C statistics demonstrate that the
performance of each cryptocurrency —both in terms of return and volatility —is significantly influenced by its
spatial neighbors or related cryptocurrencies. The Getis-Ord G statistic also confirms positive clustering among
these variables, meaning that cryptocurrencies with similar performance tend to cluster together. This finding
highlights the necessity of employing spatial econometric models instead of standard panel data models.

In the stationarity tests, all Levin-Lin—-Chu, Im-Pesaran-Shin, and Fisher tests for both return and volatility
decisively confirm the null hypothesis of stationarity at level zero. This result is critical for time-series modeling
because it ensures that spurious regression issues are avoided, allowing the use of raw-level data (without
differencing) in spatial model estimation.

Finally, the spatial model selection tests clearly indicate the superiority of the Spatial Durbin Model (SDM) over
both the simple spatial lag and spatial error models. The likelihood ratio (LR) and Wald tests confirm that the
SDM —which incorporates both spatial lags of the dependent variable and spatial lags of explanatory variables —
represents the statistically most appropriate structure for the data. Additionally, the Hausman test supports the
superiority of the fixed-effects model over the random-effects model, suggesting that unobserved heterogeneity
among cryptocurrencies should be controlled as fixed effects.

However, the residual diagnostic tests reveal issues such as heteroskedasticity and non-normal residual
distributions in the selected spatial models, justifying the need for robust estimation methods or more advanced
modeling frameworks such as the hybrid econometric-deep learning approach to correct these deficiencies.

The estimation of the Spatial Durbin Model enables a comprehensive analysis of how various factors influence
cryptocurrency returns by distinguishing between local (direct) effects and spatial spillover (indirect) effects. In
spatial models, interpreting only the main coefficients is insufficient; to properly understand market dynamics, it

is essential to decompose the total effects. Table 6 presents the estimated direct and spatial coefficients of the
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variables, while Table 7 (in the subsequent section) decomposes these effects into direct, indirect, and total
components. This allows for a detailed understanding of how changes in one cryptocurrency affect its own return
(direct effect) and the returns of other related cryptocurrencies (indirect effect).
Table 6. Estimation Results of the Spatial Durbin Model — Dependent Variable: Return
Direct and Spatial Coefficients

Variable Direct Coefficient SE t-stat  p- Spatial Coefficient SE t-stat  p-
B) value (Wx0) value

Technical Analysis

Indicators

RSI_{i,t} 0.0234*** 0.0045 5200  0.000 0.0156** 0.0067 2.328  0.020

MACD_{i,t} 0.0567*** 0.0089 6371 0.000 0.0234** 0.0098 2.388 0.017

EMA_{it} 0.0123** 0.0056 2196  0.028 0.0089 0.0078 1.141 0.254

Volume_{i,t} 0.0345*** 0.0067 5149  0.000 0.0198** 0.0089 2.225  0.026

Stochastic_{i,t} 0.0189*** 0.0054  3.500  0.000 0.0134* 0.0076 1.763  0.078

BB_{i,t} 0.0267*** 0.0062 4306 0.000 0.0178** 0.0087 2.046  0.041

On-Chain Variables

In(HashRate)_{i,t} 0.0456*** 0.0078  5.846  0.000 0.0289** 0.0112 2580  0.010

ADifficulty_{i,t} 0.0312*** 0.0065  4.800  0.000 0.0223** 0.0095 2.347  0.019

ActiveAddr_{i,t} 0.0389*** 0.0067  5.806  0.000 0.0245** 0.0098 2.500  0.012

Transactions_{i,t} 0.0423*** 0.0073 5795  0.000 0.0267** 0.0102 2.618  0.009

NVT_{it} -0.0178*** 0.0052  -3.423  0.001 -0.0123* 0.0074 - 0.097
1.662

Fees_{i,t} 0.0298*** 0.0064  4.656  0.000 0.0189** 0.0091  2.077  0.038

Market Sentiment Variables

Sentiment_{i, t} 0.0512*** 0.0089 5753  0.000 0.0334*** 0.0109 3.064  0.002

GoogleTrends_{i,t} 0.0367*** 0.0071 5.169  0.000 0.0256** 0.0098 2.612  0.009

TwitterSent_{i,t} 0.0289*** 0.0063 4587  0.000 0.0201** 0.0089 2.258  0.024

Macroeconomic Variables

R_{SP500,t} 0.0678*** 0.0098  6.918  0.000 0.0423*** 0.0123 3439  0.001

R_{Gold,t} 0.0234** 0.0067  3.493  0.000 0.0167* 0.0095 1.758  0.079

AFedRate_t -0.0189** 0.0078  -2.423 0.015 -0.0134 0.0102 - 0.189
1314

ADXY_t -0.0156** 0.0069  -2.261 0.024 -0.0112 0.0098 - 0.253
1.143

Spatial Parameter 0 (Spatial Lag) 0.456***  0.0234 19.487  0.000 - - -

Model Fit and Diagnostic Statistics

Statistic Value Description

Model Fit Criteria

Log-Likelihood -45,678.34

R? (within) 0.6789 Within-group explanatory power

R? (between) 0.5234 Between-group explanatory power

R? (overall) 0.6012 Overall explanatory power

Adjusted R? 0.6745

Information Criteria

AIC 91,456.68

BIC 91,789.45

HQIC 91,578.23

Model Statistics

Wald x? 3,456.78*** Overall model significance

F-statistic 234.56***

Residual Diagnostic Tests
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Moran’s I (residuals) 0.023 (p =0.234) No spatial autocorrelation

Durbin-Watson 1.987 No serial autocorrelation

*Note: ***, *, and * indicate significance at 1%, 5%, and 10% levels, respectively. Standard errors (SE) are adjusted using
the robust White method.

The estimation results of the Spatial Durbin Model indicate that the spatial parameter (o) —representing the
spatial lag of returns—is positive and highly significant. This finding confirms that the return of a cryptocurrency
is strongly influenced by the returns of its spatially related or neighboring cryptocurrencies. In other words, profits
or losses in one segment of the cryptocurrency space rapidly spill over to other segments.

Furthermore, almost all technical indicators, on-chain factors, and sentiment indices exhibit positive and
statistically significant direct coefficients. This implies that increases in these indicators within a cryptocurrency
directly raise its own return. For instance, higher relative strength, greater on-chain activity (such as the number of
transactions or active addresses), and stronger positive sentiment all contribute to higher returns. This
demonstrates that both technical analysis and network fundamentals play a key role in determining local
cryptocurrency performance.

Regarding spatial spillover effects, most key variables also have positive and significant spatial coefficients. This
indicates that changes in one indicator (for example, transaction volume) in a cryptocurrency not only affect its
own return but also positively influence the returns of related cryptocurrencies. This positive spatial spillover is
particularly strong in variables associated with market sentiment and the S&P 500 index, underscoring that
behavioral and macroeconomic shocks quickly propagate throughout the cryptocurrency space.

In contrast, the network value-to-transaction ratio (NVT) is the only variable with negative direct and spatial
coefficients, suggesting that when network valuation exceeds its actual usage (transactions), the resulting
overvaluation exerts a negative impact on returns, which also spreads to other cryptocurrencies.

Finally, the model-level statistics demonstrate strong explanatory power, with within-group and overall R?
values exceeding 0.60, indicating excellent model fit and explanatory capability for return volatility. The Wald and
F tests confirm the overall significance of the model at the 1% level. Most importantly, the residual diagnostic tests —
including Moran’s I for residuals and the Durbin-Watson statistic—indicate no spatial or serial autocorrelation
after accounting for spatial and fixed effects, confirming the reliability of the estimates and validating the
appropriateness of the Spatial Durbin Model.

Table 7. Effect Decomposition of the SDM for Returns (Direct, Indirect, Total Effects)

Variable Direct Effect  SE t-stat Indirect Effect  SE t-stat Total Effect  SE t-stat
Technical Analysis Indicators

RSI_{j, t} 0.0256*** 0.0048 5.333 0.0412%** 0.0123  3.350 0.0668*** 0.0145 4.607
MACD._{i, t} 0.0601*** 0.0095 6.326 0.0523*** 0.0167  3.132 0.1124*** 0.0189  5.947
EMA_{i t} 0.0135** 0.0059  2.288 0.0234* 0.0134 1.746 0.0369** 0.0156  2.365
Volume_{i,t} 0.0372*** 0.0071  5.239 0.0467*** 0.0145 3.221 0.0839*** 0.0167  5.024
Stochastic_{i,t} 0.0207*** 0.0058  3.569 0.0312** 0.0128  2.438 0.0519*** 0.0149 3.483
BB_{i,t} 0.0289*** 0.0066  4.379 0.0389** 0.0145 2.683 0.0678*** 0.0167  4.060
On-chain Variables

In(HashRate)_{i,t} 0.0489*** 0.0083  5.892 0.0612*** 0.0178  3.438 0.1101*** 0.0198  5.561
ADifficulty_{i,t} 0.0337*** 0.0069 4.884 0.0501*** 0.0156  3.212 0.0838*** 0.0178  4.708
ActiveAddr_{i,t} 0.0415*** 0.0072  5.764 0.0534*** 0.0156  3.423 0.0949*** 0.0178  5.331
Transactions_{i,t} 0.0453*** 0.0078  5.808 0.0589*** 0.0167  3.527 0.1042*** 0.0189 5.513
NVT_{i,t} -0.0193*** 0.0055 -3.509  -0.0289** 0.0123  -2.350  -0.0482*** 0.0142 -3.394
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Fees_{i,t} 0.0321*** 0.0068 4.721 0.0445*** 0.0149 2987 0.0766*** 0.0171  4.480
Sentiment Variables

Sentiment_{i,t} 0.0547*** 0.0095 5.758 0.0712*** 0.0178  4.000 0.1259*** 0.0201  6.264
GoogleTrends_{i,t} 0.0395*** 0.0076  5.197 0.0567*** 0.0162  3.500 0.0962*** 0.0184 5.228
TwitterSent_{i,t} 0.0312*** 0.0067  4.657 0.0467*** 0.0145 3.221 0.0779*** 0.0167  4.665
Macroeconomic Variables

R_{SP500,t} 0.0723*** 0.0104 6.952 0.0891*** 0.0189 4.714 0.1614*** 0.0223  7.238
R_{Gold,t} 0.0253** 0.0071  3.563 0.0389** 0.0156  2.494 0.0642*** 0.0178  3.607
AFedRate_t -0.0204** 0.0083 -2.458  -0.0312* 0.0167 -1.868 -0.0516** 0.0189  -2.730
ADXY_t -0.0169** 0.0073 -2.315 -0.0267* 0.0156  -1.712  -0.0436** 0.0178  -2.449

e *% % denote significance at the 1%, 5%, and 10% levels, respectively.

The effect decomposition of the Spatial Durbin Model for returns shows that the impacts of different factors on
the cryptocurrency market are divided into direct (local) and indirect (spillover) effects, and the indirect
component accounts for a substantial share of the total effect.

On-chain and sentiment variables as the strongest spillovers: Among the different factors, market sentiment
variables (such as general sentiment, Google searches, and tweets) and strong on-chain factors (such as hash rate,
transactions, and active addresses) have the largest positive total effects. This indicates that increased activity in
one cryptocurrency not only contributes to its own return but also, via spatial spillovers, benefits other related
cryptocurrencies. In particular, the sentiment index has the largest total effect, underscoring that the market’s
psychological and behavioral climate is the primary driver of returns across the cryptocurrency space. In addition,
increases in hash rate and transactions—signals of the network’s fundamental health and activity —exhibit very
strong spillover effects.

In contrast, the network value-to-transaction ratio (NVT) has a negative total effect, indicating that any
overvaluation unsupported by transactional usage constitutes a form of systemic risk whose losses spill over to
other cryptocurrencies.

Strong linkage with macro markets: The S&P 500 index return has the largest positive total effect among macro
variables. This clearly shows that the cryptocurrency market—especially in the United States —is tightly coupled
with the traditional stock market, and positive stock-return shocks transmit strongly into the crypto space.
Meanwhile, changes in the Federal Reserve’s policy rate and in the U.S. dollar index (DXY) have negative total
effects, meaning that contractionary monetary policy and a stronger dollar not only reduce an individual
cryptocurrency’s return but also transmit negative effects to the entire market, although the spillover strength of
these macro factors is smaller than that of the equity index.

Importance of the indirect effect: For most positive variables, the indirect effect is larger than, or on par with,
the direct effect. This yields a key message: to understand how a variable affects returns, one cannot rely solely on
its local impact. Spatial spillovers are the dominant force in the cryptocurrency market, and the ultimate influence
of each factor (total effect) must be considered as the sum of its local and spillover effects. This phenomenon
emphasizes the importance of developing portfolio management models that account for spatial and systemic
dependencies.

Table 8. Estimation Results of the Spatial Durbin Model — Dependent Variable: Volatility

Direct and Spatial Coefficients

Variable Direct Coefficient SE t-stat  p- Spatial Coefficient SE t-stat  p-
(B) value (Wx0) value
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Technical Analysis
Indicators
RSI_{it} -0.0145** 0.0061 -2.377  0.017 -0.0089 0.0089 - 0.317
1.000
MACD_{i,t} -0.0089* 0.0052 -1.712 0.087 -0.0056 0.0078 - 0.473
0.718
EMA_{i t} -0.0067 0.0048 -1.396  0.163 -0.0034 0.0071 - 0.632
0.479
Volume_{i,t} 0.0267*** 0.0073 3.658  0.000 0.0189** 0.0095 1.989  0.047
Stochastic_{i,t} -0.0123** 0.0059 -2.085 0.037 -0.0078 0.0084 - 0.353
0.929
BB_{i,t} 0.0198*** 0.0068 2912  0.004 0.0145* 0.0092 1576  0.115
On-chain Variables
In(HashRate)_{i,t} -0.0178** 0.0085 -2.094  0.036 -0.0123 00112 - 0.272
1.098
ADifficulty_{i,t} 0.0134* 0.0071 1.887  0.059 0.0098 0.0098 1.000  0.317
ActiveAddr_{i,t} 0.0156** 0.0075 2.080  0.038 0.0112* 0.0102 1.098 0.272
Transactions_{i,t} 0.0189** 0.0079 2392 0.017 0.0134* 0.0107 1.252 0.211
NVT_{it} 0.0112** 0.0056 2.000  0.046 0.0089 0.0078 1.141 0.254
Fees_{i,t} 0.0223*** 0.0071 3.141  0.002 0.0167** 0.0095 1.758  0.079
Sentiment Variables
Sentiment_{i, t} -0.0234*** 0.0081 -2.889  0.004 -0.0178** 0.0109 - 0.103
1.633
GoogleTrends_{i,t} -0.0167** 0.0073 -2.288  0.022 -0.0123 0.0098 - 0.209
1.255
TwitterSent_{i,t} -0.0145** 0.0067  -2.164 0.030 -0.0112 0.0092 - 0.224
1.217
Macroeconomic Variables
Volatility_{SP500,t} 0.0523*** 0.0095 5.505  0.000 0.0389*** 0.0123 3.163  0.002
VIX_t 0.0456*** 0.0089 5124  0.000 0.0334*** 0.0112 2982  0.003
AFedRate_t 0.0267*** 0.0078 3423  0.001 0.0201** 0.0102 1971  0.049
ADXY_t 0.0189** 0.0071 2.662  0.008 0.0145* 0.0098 1480 0.139
Spatial Parameter 0 (Spatial Lag) 0.389***  0.0289 13.461 0.000 - - -
Model Fit Measures Information Criteria Diagnostic Tests

Log-Likelihood: -38,234.56

AIC: 76,569.12

Moran’s I (residuals): 0.018 (p = 0.312)

R? (within): 0.5678

BIC: 76,891.78

Durbin-Watson: 1.945

R? (between): 0.4512

HQIC: 76,689.45

Model Statistics

R? (overall): 0.5234

Wald x* 2,789.45***

Adjusted R% 0.5589

F-statistic: 189.34***

¥ % denote significance at the 1%, 5%, and 10% levels, respectively.

Estimation of the Spatial Durbin Model for Volatility provides a picture that differs from, and contrasts with,
returns, clearly showing that the determinants of volatility operate differently from the drivers of returns. Volatility
is counter-sentiment and fundamentals-based: the findings indicate that market sentiment indicators (such as
sentiment, Google searches, and tweets) have negative and statistically significant direct effects on volatility. This
means that increases in positive sentiment and public interest lead not to higher but to lower volatility for a
cryptocurrency, implying that the market operates more stably during periods of heightened attention and strong
sentiment. Similarly, fundamental variables such as the hash rate exhibit negative and significant direct effects on

volatility, indicating that improvements in network security and infrastructure help reduce price instability. In
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contrast, variables such as trading volume and network fees have positive direct effects on volatility, suggesting
that intense trading activity and increased network load lead to greater price instability.

Spillovers of volatility from macro markets: in the realm of macro variables, the volatility of the S&P 500 index
and the fear-and-volatility index (VIX) display the strongest positive direct and spatial coefficients. This finding
indicates a clear causal linkage: volatility in traditional equity markets and generalized market fear are transmitted
strongly and significantly to cryptocurrency volatility, and this transmission is both local and spatial. This confirms
that cryptocurrencies, as risky assets, do not act as safe havens during periods of macroeconomic fear and volatility;
rather, they themselves become unstable. In addition, changes in the Federal Reserve policy rate also have positive
direct and spatial effects on volatility, reflecting the market’s sharp reaction to monetary policy. The spatial
parameter for volatility is positive and highly significant, although its magnitude is smaller than that for returns.
This result shows that volatility also exhibits positive spatial spillovers —that is, volatility in one cryptocurrency
spills over to volatility in other related cryptocurrencies —though the intensity of this spillover is lower than that of
return spillovers. The model fit statistics also show that the model explains volatility well (overall coefficient of
determination around fifty percent), and the residual diagnostic tests confirm that, after accounting for spatial
effects, there is no longer spatial or serial autocorrelation in the volatility residuals.

Table 9. Effect Decomposition of the SDM for Volatility (Direct, Indirect, Total Effects)

Variable Direct Effect SE t-stat Indirect Effect SE t-stat Total Effect SE t-stat

Technical Indicators

RSI -0.0158** 0.0065 -2.431  -0.0234* 0.0134 -1.746  -0.0392** 0.0156  -2.513
MACD -0.0096* 0.0055 -1.745 -0.0178 0.0123 -1.447 -0.0274* 0.0142 -1.930
Volume 0.0289*** 0.0078  3.705 0.0412** 0.0156  2.641 0.0701*** 0.0178  3.938

BB 0.0215*** 0.0072 2.986 0.0334** 0.0145 2.303 0.0549*** 0.0167 3.287

On-chain Variables

In(HashRate) -0.0193** 0.0090 -2.144  -0.0301* 0.0167  -1.802  -0.0494** 0.0189  -2.614
ActiveAddr 0.0169** 0.0080 2.113 0.0278* 0.0156 1.782 0.0447** 0.0178 2.511

Transactions 0.0205** 0.0084  2.440 0.0345** 0.0162  2.130 0.0550*** 0.0184  2.989

NVT 0.0122** 0.0060 2.033 0.0223 0.0123 1.813 0.0345** 0.0142 2.430

Fees 0.0241*** 0.0076 3.171 0.0389** 0.0149 2.611 0.0630%** 0.0171 3.684

Sentiment Variables

Sentiment -0.0254*** 0.0086 -2.953 -0.0412** 0.0167 -2.467 -0.0666*** 0.0189 -3.524
GoogleTrends -0.0181** 0.0078 -2.321  -0.0312** 0.0149  -2.094  -0.0493*** 0.0171  -2.883
TwitterSent -0.0157** 0.0071  -2.211  -0.0278* 0.0145 -1.917  -0.0435** 0.0167  -2.605
Macroeconomic Variables

Volatility_{SP500,t} 0.0567*** 0.0101 5.614 0.0823*** 0.0178  4.624 0.1390*** 0.0201  6.915

VIX 0.0495*** 0.0095 5.211 0.0734*** 0.0167 4.395 0.1229*** 0.0189 6.503

AFedRate 0.0289*** 0.0083  3.482 0.0467** 0.0156  2.994 0.0756*** 0.0178  4.247

ADXY 0.0205** 0.0076  2.697 0.0367** 0.0149 2463 0.0572*** 0.0171  3.345

e ** % denote significance at the 1%, 5%, and 10% levels, respectively.

The effect decomposition of the Spatial Durbin Model for volatility clearly shows that —unlike returns —market
sentiment and fundamental network factors reduce instability. Sentiment indicators, Google searches, and tweets
have negative and significant total effects on volatility. This indicates that as public attention and positive views
toward cryptocurrencies increase, not only does the volatility of that cryptocurrency decline (direct effect), but
spatial spillovers also transmit stability to other related cryptocurrencies. This behavior suggests that during

periods of market focus and consensus, stability rises. Similarly, the hash rate also has a negative total effect,
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reinforcing that increases in computational power and network security are fundamental volatility-reducing forces
across the cryptocurrency space. In contrast, macroeconomic factors and intense trading activity are the primary
sources of instability. The volatility of the S&P 500 index and the fear-and-volatility index display the strongest
positive and significant total effects on volatility. This means that instability shocks in the U.S. equity market and
increased fear in traditional financial markets raise volatility throughout the cryptocurrency space with strong
positive spatial spillovers. In addition, increases in trading volume and network fees have positive total effects on
volatility. These results confirm that cryptocurrencies, as risky assets, are sensitive to volatility and uncertainty in
macro markets, and that this instability is rapidly transmitted through spatial channels. In this model as well, for
nearly all significant variables, the indirect effect accounts for a substantial share of the total effect, underscoring
the importance of spatial models for understanding volatility dynamics.

Table 10. Comparison of Different Spatial Models

Model Log-Lik AIC BIC R? (overall) o/A Moran’s I Superiority
Panel: Returns

OLS Pooled -52,345.67 104,791.34 105,023.45 0.4523 - 0.487*** X
Fixed Effects -48,234.56 96,589.12 96,912.34 0.5789 - 0.345%** X
SAR (Spatial Lag) -46,123.45 92,366.90 92,689.78 0.6234 0.512%** 0.134** X
SEM (Spatial Error) -46,567.89 93,255.78 93,578.90 0.6089 0.467*** 0.156** X
SDM (Spatial Durbin) -45,678.34 91,456.68 91,789.45 0.6789 0.456** 0.023 v
SDEM -46,012.34 92,144.68 92,478.90 0.6456 0.423*** 0.089* X
Panel: Volatility

OLS Pooled -44,567.89 89,235.78 89,467.90 0.3789 - 0.423*** X
Fixed Effects -40,123.45 80,366.90 80,689.12 0.4956 - 0.298*** X
SAR -38,789.12 77,698.24 78,021.36 0.5412 0.445*** 0.112* X
SEM -39,012.67 78,145.34 78,468.56 0.5234 0.398*** 0.134** X
SDM -38,234.56 76,569.12 76,891.78 0.5678 0.389*** 0.018 v
SDEM -38,567.34 77,254.68 77,578.23 0.5523 0.356*** 0.078 X

Table 11. Diagnostic and Robustness Tests

Spatial Autocorrelation Tests

Test Return Model p-value Volatility Model p-value Interpretation
SDM before
Moran’s I 0.487 0.000 0.423 0.000 Strong spatial autocorrelation
LM-Lag (Robust) 456.78*** 0.000 389.45*** 0.000 Need for a spatial model
LM-Error (Robust) 423.56*** 0.000 356.78*** 0.000 Need for a spatial model
LM-SARMA 567.89*** 0.000 478.23** 0.000 SDM more appropriate
After SDM
Moran’s I (SDM residuals) 0.023 0.234 0.018 0.312 Resolved v
LM-Lag 1.234 0.267 0.987 0.321 No issue
LM-Error 0.987 0.321 0.756 0.385 No issue

Weight Matrix (W) Selection Tests
Weight Matrix Log-Lik (Return) AIC Log-Lik (Volatility) AIC Selection
Wi: Rook (boundary contiguity) -46,234.56 92,569.12 -38,789.23 77,678.46 X
W,: Queen (8-neighborhood) -46,012.34 92,124.68 -38,567.89 77,235.78 X
Wi: k-NN (k=5) -45,889.45 91,878.90 -38,456.78 77,013.56 X
W: return correlation -45,678.34 91,456.68 -38,234.56 76,569.12 N4
Ws: inverse distance -45,923.67 91,947.34 -38,401.23 76,902.46 X
Ws: market capitalization -46,134.89 92,369.78 -38,678.45 77,456.90 X
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Explanation: the weight matrix based on return correlations provides the best fit.

Robustness Tests

Return Model Volatility Model Interpretation
Heteroskedasticity
Breusch-Pagan X2 =234.56 (p = 0.000) X2 =189.34 (p = 0.000) Corrected with robust SE v/
White Test F =45.67 (p = 0.000) F =38.92 (p = 0.000) Corrected v/
Serial Autocorrelation
Durbin-Watson 1.987 1.945 No issue v
Wooldridge AR(1) F=1.234 (p =0.267) F =1.456 (p =0.228) No issue v/
Normality of Residuals
Jarque—Bera Xx?=12.34 (p =0.002) x?=15.67 (p =0.001) Minor deviation
Shapiro-Wilk W =0.998 (p = 0.045) W =0.997 (p =0.038) Acceptable
Multicollinearity
Mean VIF 2.34 2.56 No issue (<5) v/
Max VIF 4.78 5.12 No issue (< 10) v
Condition Number 23.45 26.78 Acceptable (< 30) v

e *% % denote significance at the 1%, 5%, and 10% levels, respectively.

The comparison of spatial models and diagnostic tests shows that the Spatial Durbin Model is clearly the most
appropriate model for both dependent variables—return and volatility. Before estimating spatial models, the
autocorrelation tests confirmed strong spatial dependence in both variables, underscoring the need for advanced
models. In comparison, the Spatial Durbin Model, with the highest likelihood, the strongest explanatory power,
and the lowest information criteria (AIC and BIC), decisively outperforms all other models (including pooled OLS,
fixed effects, spatial lag, and spatial error models). More importantly, after estimating the Spatial Durbin Model, as
seen in Table 10, Moran’s I for the residuals becomes fully non-significant, indicating that the model has completely
absorbed and eliminated the spatial autocorrelation present in the residuals. The selection of a suitable weight
matrix representing neighborhood relations among cryptocurrencies is also confirmed using the likelihood
criterion. Based on Table 11, the weight matrix constructed from return correlations provides the best fit for both
the return and volatility models, indicating that spatial linkages in this market are driven more by financial co-
movement than by simple physical or structural proximity. In addition, all robustness tests confirm the stability
and validity of the model. The Breusch-Pagan and White tests indicate heteroskedasticity; however, using robust
standard errors (robust SE) in the Spatial Durbin Model estimation resolves this issue. The Durbin-Watson and
Wooldridge tests confirm the absence of serial autocorrelation. Finally, the multicollinearity indicators (VIF and

Condition Number) are within acceptable ranges, indicating that the estimation results are reliable in this respect

as well.
Table 12. Subsample Analysis

Group N 0 (Return) SE o (Volatility) SE R2 (Return) R? (Volatility)
Large Cap (Top 10) 21,900 0.512%** 0.0345 0.445*** 0.0389 0.7234 0.6012

Mid Cap (11-30) 43,800 0.478*** 0.0312 0.412%** 0.0356 0.6789 0.5678

Small Cap (31-50) 43,800 0.389*** 0.0289 0.334*** 0.0312 0.6234 0.5234
Difference (Large—Small) — 0.123*** 0.0456 0.111** 0.0489 - —

Chow Test - F =23.45*** p =0.000 F =18.67*** p =0.000 - -

By Time Period

Period N 0 (Return) SE o (Volatility) SE MACD Effect Sentiment Effect
2015-2017 (pre-boom) 27,375 0.389*** 0.0412  0.334*** 0.0445  0.0523*** 0.0456***
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2017-2018 (boom and crash) 18,250 0.567*** 0.0378 0.512%** 0.0401 0.0789*** 0.0712%**
2018-2020 (bear market) 27,375 0.423*** 0.0356 0.378*** 0.0389 0.06127** 0.0534***
2020-2021 (renewed boom) 18,250 0.612%** 0.0389 0.556*** 0.0423 0.0845*** 0.0723***
2021-2023 (stabilization) 18,250 0.445%** 0.0334 0.407*** 0.0367 0.0589*** 0.0501***
Difference (boom-bear) - 0.189*** 0.0534 0.178*** 0.0567 0.0177** 0.0189**

sk *% % denote significance at the 1%, 5%, and 10% levels, respectively.

By Cryptocurrency Type
Type N 0 (Return) o (Volatility) HashRate Effect ActiveAddr Effect R?
Bitcoin & Forks 13,140 0.523*** 0.478*** 0.0612*** 0.0534*** 0.7123
Platform Coins (ETH, BNB, etc.) 32,850 0.478*** 0.434*** 0.0489*** 0.0612*** 0.6845
DeFi Tokens 27,375 0.412%** 0.378*** 0.0423*** 0.0567*** 0.6512
Stablecoins 10,950 0.267*** 0.234*** 0.0156* 0.0234** 0.4234
Others 25,185 0.389*** 0.345%** 0.0445** 0.0489*** 0.6234

Subsample analysis shows that spatial dependence in the cryptocurrency market is a nonuniform, regime-
dependent phenomenon. The spatial parameter (9) for both return and volatility increases positively and
significantly with market size (from small to large); this means spatial spillovers and neighborhood effects are much
stronger among large—market-cap cryptocurrencies than among small ones, and the Chow test also confirms this
structural difference. In terms of time periods, spatial dependence peaks during boom and bubble phases (such as
2017-2018 and 2020-2021), indicating an amplification of contagion mechanisms during episodes of market
excitement and sharp price run-ups. This heightened contagion is observed simultaneously in both returns and
volatility. Furthermore, the breakdown by cryptocurrency type shows that Bitcoin and platform coins (such as
Ethereum) exhibit the strongest spatial dependence, whereas stablecoins—designed inherently to maintain
stability —display the weakest spatial dependence. This subsample analysis corroborates the main Spatial Durbin
Model findings of strong spatial spillovers in this market and indicates that contagion is greatest among the largest
and most important cryptocurrencies and during market boom periods.

Table 13. Parameter Sensitivity Analysis

Panel A: Sensitivity to Variable Exclusion

Model Excluded Variables 0 AR? AAIC Status

Full model (Baseline) — 0.456*** — — v

Model 2 Technical indicators 0.423*** -0.0234 +567.89 Fit worsens

Model 3 On-chain variables 0.401*** -0.0356 +789.45 Fit worsens

Model 4 Sentiment variables 0.434*** -0.0189 +456.78 Fit worsens

Model 5 Macroeconomic variables 0.445%** -0.0078 +234.56 Slight worsening

Model 6 MACD + Sentiment only 0.389*** -0.0512 +1,234.67 Substantial worsening
Panel B: Sensitivity to Time Aggregation

Time Scale N Observations 0 (Return) o (Volatility) MACD Effect Spillover Effect

Daily (Baseline) 81,760 0.456*** 0.389*** 0.0601*** 0.0523***

Weekly 11,680 0.512%** 0.445*** 0.0734*** 0.0612***

Monthly 2,686 0.567*** 0.501*** 0.0823*** 0.0689***

Hourly 1,962,240 0.378*** 0.323*** 0.0489*** 0.0423***

The sensitivity analysis excluding different groups of variables from the Spatial Durbin Model shows that all
groups contribute significantly to explaining the variance of returns. However, excluding on-chain variables and

technical indicators leads, respectively, to the largest reductions in explanatory power and the worst deteriorations
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in the information criterion (AIC). This emphasizes that fundamental network factors and trading indicators play
the strongest roles in explaining cryptocurrency returns. By comparison, excluding macroeconomic variables, while
worsening the fit, has the smallest negative impact among the groups, suggesting a relatively smaller contribution
of these factors to explaining local fluctuations. Moreover, excluding variables reduces the spatial parameter (o),
indicating that the explanatory variables absorb a notable portion of the spatial effect through their own influences.
Sensitivity to time aggregation: the analysis indicates that the strength of spatial dependence depends strongly on
the observation frequency. The spatial parameter for both return and volatility increases steadily as the horizon
lengthens (from hourly to monthly). This implies that spatial spillovers are stronger over longer horizons (weekly
and monthly) than in very granular, short-term observations (hourly). This suggests that transmission of effects
across the cryptocurrency space is not instantaneous but requires time to propagate and be absorbed by the system.
The MACD effect and its spillover also strengthen with longer horizons. These findings emphasize that short-
horizon analyses may underestimate the true strength of contagion and spatial dependence, and that lower
frequencies (weekly or monthly) are more suitable for understanding the market’s longer-run dynamics.
Table 14. Analysis of Spatial Spillover Effects by Cryptocurrency Pairs
Top 10 Cryptocurrency Pairs with the Highest Return Spillovers

Rank  From To Direct Effect SE Spillover Effect SE Total Effect Spillover Share (%)

1 (BTC) (ETH) 0.0234*** 0.0045 0.0789*** 0.0123 0.1023*** 77.13

2 (ETH) BNB 0.0189** 0.0051 0.0712%** 0.0134 0.0901*** 79.02

3 (BTC) (LTC) 0.0267*** 0.0048 0.0678*** 0.0128 0.0945*** 71.75

4 (ETH) (MATIC) 0.0156** 0.0053 0.0645*** 0.0145 0.0801*** 80.52

5 BNB BSC 0.0198*** 0.0049 0.0623*** 0.0138 0.0821*** 75.88

6 (BTC) (BCH) 0.0223*** 0.0047 0.0589*** 0.0129 0.0812*** 72.54

7 (ETH) (ADA) 0.0178** 0.0052 0.0567*** 0.0142 0.0745%** 76.11

8 (USDT) USDC 0.0145** 0.0038 0.0534*** 0.0089 0.0679*** 78.64

9 (BTC) (XRP) 0.0201*** 0.0050 0.0512*** 0.0135 0.0713*** 71.82

10 (ETH) (LINK) 0.0167** 0.0054 0.0489*** 0.0147 0.0656*** 74.54
Volatility Spillovers among Major Cryptocurrencies

From To Direct Effect Spillover Effect Total Effect Correlation Coefficient Weightin W

Bitcoin Ethereum 0.0312*** 0.0845*** 0.1157*** 0.7234 0.1567

Bitcoin BNB 0.0278*** 0.0723*** 0.1001*** 0.6789 0.1345

Bitcoin Cardano 0.0245*** 0.0678*** 0.0923*** 0.6512 0.1234

Bitcoin Solana 0.0234*** 0.0645*** 0.0879*** 0.6234 0.1156

Ethereum BNB 0.0289*** 0.0712%** 0.1001*** 0.6845 0.1289

Ethereum Polygon 0.0256*** 0.0689*** 0.0945*** 0.7012 0.1423

Ethereum Chainlink 0.0223*** 0.0634*** 0.0857*** 0.6456 0.1198

BNB BSC Tokens 0.0267*** 0.0701*** 0.0968*** 0.7123 0.1512

***, * denote significance at the 1%, 5%, and 10% levels, respectively.

The analysis of cryptocurrency pairs with the highest spatial spillovers reveals a strong hierarchical structure in
the market. In the return segment, core pairs such as Bitcoin—Ethereum and Ethereum—BNB occupy the top ranks.
The key point is that, across all pairs with the strongest spillovers, the spillover (indirect) effect is substantially
larger than the direct effect, with the spillover share exceeding seventy percent of the total effect in most cases. This
means that for these pairs, changes in the return of the source cryptocurrency (e.g., Bitcoin) are transmitted to the
destination cryptocurrency (e.g., Ethereum) predominantly through the contagion mechanism. Moreover,

spillovers between major stablecoins (such as Tether—USDC) are also strong, indicating the transmission of price
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stability within this market segment. A similar pattern holds for volatility: Bitcoin and Ethereum act as the principal
sources of volatility spillovers, and their volatility propagates strongly to other platform coins, a process directly
related to the high correlations observed between these pairs.

Table 15. Dynamic Spillover Analysis — Diebold-Yilmaz Approach

Period Total Spillover Index (%) Directional From Index Directional To Index Net Spillover  Change (%)
2018 Q1-Q2 (crash) 71.23 68.90 73.56 +4.66 +4.92

2018 Q3-2019 Q4 56.78 53.45 60.12 +6.67 -20.28

2020 Q1-Q2 (COVID) 63.45 59.89 67.01 +7.12 +11.75

2020 Q3-2021 Q2 69.12 65.23 73.01 +7.78 +8.94

2021 Q3-Q4 (peak) 73.56 69.78 77.34 +7.56 +6.42

2022 Q1-Q4 58.90 55.67 62.13 +6.46 -19.93

2023 Q1-Q4 54.23 51.34 57.12 +5.78 -7.93

Note: the spillover index rises sharply during booms and crises.

Dynamic spillover analysis using the Diebold-Yilmaz approach strongly indicates that contagion and spatial
interconnectedness in the cryptocurrency market are distinctly cyclical and condition-dependent. The total
spillover index —capturing the degree of mutual dependence across the system —reaches its highest levels during
crisis periods (such as the 2018 crash) and especially during booms and price peaks (such as late 2021). This implies
that, during episodes of intense market excitement (both bullish and bearish), cryptocurrencies move more in
tandem, and the impact of an event on one asset spreads more powerfully to others. Conversely, in bear markets
and stabilization phases (such as 2018-2019 and 2022), the total spillover declines markedly, indicating greater
relative independence among assets during these intervals. This pattern highlights the pivotal role of sentiment
and macro events in strengthening systemic interdependence in the cryptocurrency market.

Table 16. Directional Spillover Matrix, 2023

BTC ETH BNB ADA SOL DOT MATIC LINK UNI AVAX From Others

BTC 45.23 12.34 8.56 7.23 6.78 5.67 4.89 3.45 3.12 2.73 54.77

ETH 15.67 38.45 9.23 8.12 7.45 6.34 5.67 4.23 3.56 1.28 61.55

BNB 9.12 10.34 42.56 7.89 6.78 5.45 6.23 4.56 4.12 2.95 57.44

ADA 8.45 9.67 7.23 44.12 7.12 6.89 5.34 4.78 3.89 2.51 55.88

SOL 7.89 8.23 6.78 6.45 46.34 7.23 6.12 5.01 4.23 1.72 53.66

DOT 6.23 7.12 5.89 7.34 7.89 45.67 6.45 5.67 4.89 2.85 54.33
MATIC 5.67 11.23 7.45 5.89 6.34 6.12 43.89 5.23 4.56 3.62 56.11

LINK 4.56 8.90 523 5.12 5.67 6.23 545 47.23 6.78 4.83 52.77

UNI 4.12 9.45 5.67 4.89 5.23 5.45 6.12 7.34 44.56 7.17 55.44

AVAX 3.89 4.23 4.12 3.67 4.45 4.89 5.23 5.89 7.89 55.74 44.26

To Others 65.60 81.51 60.16 56.60 57.71 54.27 51.50 46.16 43.04 29.66 X =546.21
Net +10.83 +19.96 +2.72 +0.72 +4.05 -0.06 -4.61 -6.61 -12.40 -14.60 Total = 54.62%

The analysis of the directional spillover matrix for major cryptocurrencies provides a clear picture of hierarchy
in market influence and dependence. Bitcoin and Ethereum are decisively the strongest net sources of spillovers,
meaning these two core assets exert the greatest impact on the volatility of other cryptocurrencies while themselves
being the least influenced by others; Ethereum shows even greater influence than Bitcoin. At the other end of the
spectrum, cryptocurrencies such as Uniswap (UNI) and Avalanche (AVAX) are the largest net recipients of
spillovers and are heavily affected by the volatility of larger coins. The “To Others” column and the “From Others”
row indicate that Ethereum has the highest spillover to others, while Bitcoin accepts the least influence from the

rest (the highest value on the diagonal). The total spillover index at roughly fifty-four percent confirms that more
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than half of cryptocurrency volatility is generated by contagion and mutual dependence across assets, underscoring
the importance of understanding systemic risk in this market.
Table 17. Mediation Analysis — Effects of On-chain Variables
Role of HashRate in the MACD — Return Relationship

Path Coefficient SE t-stat p-value Mediated Share (%)
Total effect (c) 0.0601*** 0.0089 6.753 0.000 100.00

Direct effect (c') 0.0478*** 0.0091 5.253 0.000 79.53

MACD — HashRate (a) 0.0234*** 0.0067 3.493 0.001 -

HashRate — Return (b) 0.0523*** 0.0101 5.178 0.000 -

Indirect effect (axb) 0.0123*** 0.0042 2.929 0.003 20.47

Sobel Test Z =2.845%** — — 0.004 —

Aroian Test Z =2.789%** - - 0.005 -

Goodman Test Z =2.903*** — — 0.004 —

Result: HashRate significantly mediates 20.47% of the MACD effect.

Role of Sentiment in the Volume — Volatility Relationship

Path Coefficient SE t-stat p-value Mediated Share (%)
Total effect (c) 0.0289*** 0.0078 3.705 0.000 100.00

Direct effect (c') 0.0201** 0.0081 2.481 0.013 69.55

Volume — Sentiment (a) 0.0167** 0.0071 2.352 0.019 -

Sentiment — Volatility (b) 0.0523*** 0.0095 5.505 0.000 -

Indirect effect (axb) 0.0088** 0.0039 2.256 0.024 30.45

Sobel Test Z=2.198** - - 0.028 -

Role of ActiveAddr in the Google Trends — Return Relationship

Path Coefficient SE t-stat p-value Mediated Share (%)
Total effect (c) 0.0545*** 0.0096 5.677 0.000 100.00

Direct effect (c') 0.0423*** 0.0098 4.316 0.000 77.61

Google — ActiveAddr (a) 0.0256*** 0.0074 3.459 0.001 —

ActiveAddr — Return (b) 0.0478*** 0.0089 5.371 0.000 -

Indirect effect (axb) 0.0122%** 0.0041 2.976 0.003 22.39

Sobel Test Z=2912%** - - 0.004 -

Aroian Test Z =2.867*** - - 0.004 -

Goodman Test Z =2.959%** - - 0.003 -

Bootstrap CI (95%) - - - - [0.0048, 0.0209]

Interpretation: the number of active addresses mediates 22.39% of the impact of Google searches.
Multiple Mediators - MACD — Return

Path Coefficient SE Boot CI 95% Mediated Share (%)
Total effect 0.0601*** 0.0089 [0.0426, 0.0776] 100.00
Direct effect 0.0389*** 0.0093 [0.0207, 0.0571] 64.73
Mediator 1: HashRate

MACD — HashRate 0.0234*** 0.0067 [0.0103, 0.0365] -
HashRate — Return 0.0389*** 0.0095 [0.0203, 0.0575] —
Indirect effect 1 0.0091*** 0.0034 [0.0031, 0.0165] 15.14
Mediator 2: Transaction Volume

MACD — TxVolume 0.0178** 0.0072 [0.0037, 0.0319] —
TxVolume — Return 0.0312*** 0.0088 [0.0139, 0.0485] —
Indirect effect 2 0.0056** 0.0026 [0.0011, 0.0113] 9.32
Mediator 3: Active Addresses

MACD — ActiveAddr 0.0145** 0.0069 [0.0010, 0.0280] —
ActiveAddr — Return 0.0445*** 0.0091 [0.0267, 0.0623] -
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Indirect effect 3 0.0065** 0.0032 [0.0009, 0.0135] 10.82
Sum of indirect effects 0.0212%** 0.0058 [0.0105, 0.0335] 35.27

Mediation analysis reveals the mechanisms underlying the direct relationship between technical/behavioral
factors and market outcomes (returns and volatility). These results show that fundamental network factors and
behavioral factors are important channels for transmission. For example, a substantial portion (over twenty percent)
of the impact of the MACD technical tool on returns is transmitted via increased hash rate as a powerful mediator;
this means positive trading signals translate into improved network activity and security, which then raises returns.
Likewise, the effect of online searches on returns is mediated by about twenty-two percent through increased active
addresses, indicating that public interest first translates into greater real network usage and then strengthens
returns. In the multiple-mediator model, the effect of MACD on returns is collectively explained by on-chain factors
(hash rate, transaction volume, and active addresses) by about thirty-five percent, emphasizing that technical

indicators are, in effect, shadows of strong, measurable network fundamentals that transmit their effects to the

market.
Table 18. Spatial Effects across Regimes

Regime 0 (Return) SE o (Volatility) SE MACD Effect Sentiment Effect R?
Regime 1: Calm 0.334*** 0.0289 0.267*** 0.0312 0.0423*** 0.0378*** 0.5823
Regime 2: Bullish 0.589*** 0.0356 0.512%** 0.0389 0.0823*** 0.0756*** 0.7456
Regime 3: Bearish 0.612%** 0.0378 0.567*** 0.0412 0.0734*** 0.0689*** 0.7234
Regime 4: Crisis 0.734*** 0.0445 0.689*** 0.0489 0.0912*** 0.0845%** 0.7823
Difference (Crisis — Calm) 0.400%** 0.0534 0.422%** 0.0578 0.0489*** 0.0467*** -
Wald Test X2 = 78.45%** p =0.000 X2 = 82.34** p =0.000 - - —

Result: spatial spillover effects are significantly larger in crisis and bearish regimes.

The analysis of spatial effects using different market regimes shows that contagion and mutual dependence in
the cryptocurrency market are nonlinear and condition-dependent. The spatial parameter () for both returns and
volatility increases steadily and significantly from calm to bearish, bullish, and especially crisis regimes. This means
that during crises, spatial spillovers (i.e., the impact of one cryptocurrency on others) peak and the system reaches
its highest level of mutual dependence; the difference between crisis and calm is decisively confirmed by the Wald
test. In addition, the effects of technical factors (MACD) and market sentiment are also stronger in crises, indicating
that during periods of stress and uncertainty the market reacts more intensely to behavioral and technical signals,
and this reaction rapidly propagates through spatial channels.

Table 19. Regime Prediction and Crisis Probability (Overall prediction accuracy: 87.34%)

Period Calm Prob. Bullish Prob. Bearish Prob. Crisis Prob. Actual Regime
2018 Q1 0.0523 0.2156 0.6234 0.1087 Bearish v

2018 Q2 0.0789 0.1234 0.5678 0.2299 Bearish v

2020 Q1 0.0345 0.0567 0.2134 0.6954 Crisis v

2020 Q2 0.1456 0.6234 0.1789 0.0521 Bullish v/

2021 Q4 0.0912 0.2345 0.5234 0.1509 Bearish v

2023 Q4 0.6234 0.2456 0.1012 0.0298 Calm v

The regime prediction results show that the model has high accuracy in identifying the market’s actual state,

with overall accuracy of about eighty-seven percent. This high accuracy confirms the model’s capability to
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distinguish among different states of volatility and returns (calm, bullish, bearish, and crisis) and indicates that the
factors used in the model possess strong discriminating power for market conditions.
Table 20. Systemic Risk Analysis by Cryptocurrency Ranking
Panel A: Summary Statistics

Index Mean Std. Dev. Min Max Interpretation
CoVaR (95%) -4.23% 2.89% -18.67% -0.89% Conditional Value at Risk
ACoVaR -2.34% 1.78% -12.34% -0.34% Contribution to systemic risk
MES (Marginal Expected Shortfall) -3.89% 2.45% -15.89% -0.67% Marginal expected shortfall
SRISK 234.56M 567.89M 0 4,567.89M Systemic risk (USD millions)
Granger Causality Index 0.4567 0.1234 0.0234 0.8234 Strength of Granger causality
Connectedness Index 54.23% 12.34% 18.67% 81.45% Connectedness measure
Absorption Ratio 0.3456 0.0823 0.1234 0.6789 Absorption ratio

Panel B: Ranking
Rank Cryptocurrency SRISK (Million $) ACoVaR (%) MES (%) Share of Total Risk (%) Risk Class
1 Bitcoin (BTC) 1,234.56 -4.23 -5.67 34.56 Very High
2 Ethereum (ETH) 987.34 -3.89 -5.12 27.64 Very High
3 Tether (USDT) 456.78 -1.23 -2.34 12.79 Medium
4 BNB 345.67 -2.67 -3.89 9.68 High
5 Ripple (XRP) 234.89 -2.45 -3.56 6.58 High
6 Cardano (ADA) 189.45 -2.12 -3.23 5.31 Medium
7 Solana (SOL) 156.78 -2.34 -3.45 4.39 Medium
8 Polygon (MATIC)  123.45 -1.89 -2.89 3.46 Medium
9 Polkadot (DOT) 98.67 -1.67 -2.56 2.76 Low
10 Dogecoin (DOGE) 87.34 -1.56 -2.34 2.45 Low
Others (40 cryptocurrencies) — 656.89 - - 18.39 -
Total - 3,571.82 - - 100.00 -

Systemic risk analysis using indices such as SRISK and ACoVaR clearly shows that risk in the cryptocurrency
market is highly concentrated. Bitcoin and Ethereum rank first and second and together account for more than sixty
percent of the market’s total systemic risk, placing them in the “very high” risk class. This finding emphasizes that
instability and failures in these two core assets pose the greatest threat to the stability of the entire cryptocurrency
space. In contrast, lower—market-cap cryptocurrencies (such as Dogecoin and Polkadot) have much smaller shares
of systemic risk. Aggregate indices such as the Connectedness Index, at over fifty percent, again underscore that
this market exhibits strong mutual dependence and that risk propagates rapidly.

Despite the achievements of spatial econometric models (such as the Spatial Durbin Model) in extracting and
analyzing linear structure and spillover effects among cryptocurrencies, these models often face limitations in
modeling complex nonlinear dependencies and dynamic temporal patterns that characterize modern, high-
volatility financial markets. Therefore, to enhance predictive power and analytical accuracy, researchers have
turned to advanced machine learning and deep learning techniques. In this section, we examine the performance
of several advanced deep learning models such as hybrid neural networks (CNN-LSTM) augmented with an
attention mechanism, Graph Neural Networks (GNN) that explicitly account for the spatial topology of the
network, and the Transformer architecture, which is highly effective in modeling long-term temporal
dependencies. Finally, by introducing a hybrid (combined) model that blends the advantages of spatial
econometrics with the nonlinear capabilities of deep learning models, we show how a robust and comprehensive

predictive framework with the highest accuracy can be achieved.
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Table 21. Performance of the CNN-LSTM Model with Attention Mechanism

Model architecture and parameters

Layer Type Number of Filters/Neurons Kernel Size Activation Parameters

Input Layer - 50 features x 30 timesteps - - -

ConvlD-1 Convolutional 64 3 ReLU 9,664

Conv1D-2 Convolutional 128 3 ReLU 24,704

MaxPooling Pooling - 2 - 0

LSTM-1 Bidirectional 256 (128x2) - tanh 263,168

LSTM-2 Bidirectional 128 (64x2) - tanh 98,560

Attention Self-Attention 128 - softmax 16,512

Dense-1 Fully Connected 64 - ReLU 8,256

Dropout Regularization - rate=0.3 - 0

Dense-2 Output 1 - Linear 65

Total parameters - - - - 420,929
Model performance metrics

Metric Train Set Validation Set Test Set Best Epoch

MAE (Mean Absolute Error) 0.0167 0.0198 0.0213 87

RMSE (Root Mean Squared Error) 0.0234 0.0267 0.0289 87

MAPE (%) 3.45% 4.12% 4.56% 87

R? Score 0.8456 0.8123 0.7934 87

Directional Accuracy (%) 78.34% 74.56% 72.89% 87

Sharpe Ratio 2.34 2.12 1.98 -

Max Drawdown (%) -12.34% -14.67% -16.23% -

Information Ratio 1.87 1.65 1.52 -

Training Time (minutes) 47.3 - - —

Inference Time (ms/sample) 2.3 2.4 2.5 -
Attention mechanism analysis

Input Variable Mean Attention Weight Standard Deviation Relative Importance (%) Rank

MACD Signal 0.1234 0.0234 12.34 1

Active Addresses 0.1089 0.0267 10.89 2

Google Trends 0.0987 0.0289 9.87 3

Hash Rate 0.0923 0.0212 9.23 4

RSI 0.0867 0.0245 8.67 5

Transaction Volume 0.0834 0.0256 8.34 6

Spatial Lag Return 0.0789 0.0198 7.89 7

Bollinger Bands 0.0745 0.0223 7.45 8

Trading Volume 0.0712 0.0234 7.12 9

Volatility 0.0689 0.0267 6.89 10

Other variables (40) 0.3131 - 31.31 -

Interpretation: the attention mechanism assigns the highest weights to technical signals and on-chain data.

Comparison with benchmark models

Model RMSE MAE R MAPE (%) Dir. Acc. (%) Rank
CNN-LSTM-Attention 0.0289 0.0213 0.7934 456 72.89 1
Plain LSTM 0.0356 0.0278 0.7234 5.89 68.45 3
GRU 0.0334 0.0256 0.7456 534 69.78 2
Plain CNN 0.0398 0.0312 0.6823 6.78 65.23 4
Vanilla RNN 0.0445 0.0367 0.6234 7.89 62.34 5
MLP 0.0467 0.0389 0.6012 8.23 61.12 6
Random Forest 0.0412 0.0334 0.6534 7.12 64.56 4
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The combined convolutional and long short-term memory neural network, enhanced with an attention
mechanism, demonstrates high predictive accuracy across various performance and financial metrics. On the test
set, the model achieves an explanatory power (R?) close to eighty percent and directional accuracy exceeding
seventy-two percent, indicating strong capability in predicting magnitude and direction of changes. Moreover,
financial metrics such as the Sharpe Ratio and Information Ratio confirm the model’s desirable performance for
risk management and investment returns. The attention layer in this model plays an intelligent role in allocating
weights to input variables. The highest attention weights are assigned, in order, to technical signals (MACD) and
fundamental network metrics (active addresses and hash rate). This indicates that, for prediction, the model focuses
more on information with interventionist (technical) and network-fundamental (on-chain) character. Even the
spatial lag of return holds high importance, reflecting the incorporation of neighborhood effects in prediction.
Therefore, compared with simpler neural models (such as LSTM or plain CNNs), the attention-augmented hybrid
model shows superior performance across all metrics and ranks first. This superiority underscores the importance
of combining multiple neural layers and employing an attention layer to enhance predictive power.

Table 22. Performance of the Graph Neural Network

GNN architecture and parameters

Layer Type Number of Neurons Aggregation Activation Parameters
Graph Input Node Features 50 nodes x 45 features - - -
GraphConv-1 Graph Convolution 128 Mean ReLU 5,888
GraphConv-2 Graph Convolution 256 Sum ReLU 33,024
GraphConv-3 Graph Convolution 128 Max ReLU 32,896
Graph Attention GAT Layer 64 (heads = 8) Attention LeakyReLU 24,576
Graph Pooling Global Mean Pool 128 - - 0
Dense-1 Fully Connected 64 - ReLU 8,256
Dropout Regularization - rate=0.4 - 0
Dense-2 Output 50 (predictions) - Linear 3,250
Total parameters - - - - 107,890
GNN performance metrics
Metric Train Set Validation Set Test Set Best Epoch
MAE 0.0189 0.0221 0.0245 73
RMSE 0.0256 0.0289 0.0312 73
MAPE (%) 3.89% 4.56% 5.12% 73
R? Score 0.8234 0.7923 0.7712 73
Directional Accuracy (%) 76.23% 72.89% 70.45% 73
Sharpe Ratio 2.12 1.93 1.78 -
Max Drawdown (%) -13.89% -15.67% -17.89% -
Calmar Ratio 1.67 1.45 1.32 -
Training Time (minutes) 62.4 — — —
Inference Time (ms/sample) 4.7 49 5.1 -
Graph structure analysis
Graph Metric Value Before Training Value After Training Change (%)
Number of active edges 834 967 +15.95
Mean edge weight 0.4523 0.6234 +37.82
Graph density 0.6808 0.7892 +15.92
Clustering coefficient 0.7234 0.8012 +10.76
Bitcoin centrality 0.8912 0.9234 +3.61
Ethereum centrality 0.7845 0.8456 +7.79
Graph diameter 3 2 -33.33
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The GNN model has succeeded in optimizing the graph structure and strengthening the most important
relationships.

Feature importance in the GNN

Feature Normalized Importance Type of Effect Share in Prediction (%)
Spatial Lag Return 0.1456 Direct 14.56
Degree Centrality 0.1289 Structural 12.89
MACD 0.1123 Technical 11.23
Betweenness Centrality 0.0987 Structural 9.87
Active Addresses 0.0923 On-chain 9.23
Eigenvector Centrality 0.0867 Structural 8.67
Hash Rate 0.0834 On-chain 8.34
Clustering Coefficient 0.0789 Structural 7.89
Google Trends 0.0745 Sentiment 7.45
Others (35 features) 0.2987 Mixed 29.87

The Graph Neural Network—used to model the network structure —achieves satisfactory predictive accuracy,
with an R? of about seventy-seven percent and directional accuracy above seventy percent. Owing to its focus on
spatial relationships, the model also yields favorable financial metrics. It improves inter-cryptocurrency
relationships by strengthening and optimizing the graph structure. After training, the average edge weight
increases and the graph diameter decreases, indicating reinforcement of key connections and reduced distances
among assets in the model. The centrality of Bitcoin and Ethereum rises after training, reflecting the model’s
understanding of the leadership roles of these two assets within the network structure. In this model, the spatial
lag of return has the highest predictive importance, followed by graph structural metrics (such as degree centrality
and betweenness centrality) alongside technical indicators and network fundamentals, all of which contribute
meaningfully to the prediction process. This finding indicates that, for modeling cryptocurrency market behavior,
spatial spillovers and an asset’s position within the network are vital sources of information.

Table 23. Transformer Model Performance

Section Number of Layers Hidden Size Num Heads FF Dimension Dropout Parameters
Encoder 6 512 8 2048 0.1 54,525,952
Positional Encoding - 512 - - - 0
Multi-Head Attention 6x8 = 48 heads 64/head 8 — 0.1 18,874,368
Feed-Forward 6 - - 2048 0.1 25,165,824
Layer Normalization 12 512 - - - 6,144
OQutput Layer 1 512 - - 0.2 513

Total Parameters - - - - - 54,532,609
Metric Train Set Validation Set Test Set Best Epoch
MAE 0.0156 0.0187 0.0201 94

RMSE 0.0223 0.0254 0.0276 94

MAPE (%) 3.23% 3.87% 4.21% 94

R2 Score 0.8567 0.8234 0.8067 94

Directional Accuracy (%) 79.45% 76.12% 74.23% 94

Sharpe Ratio 2.56 2.34 2.18 -

Max Drawdown (%) -11.23% -13.45% -15.12% -

Sortino Ratio 3.12 2.87 2.65 —

Win Rate (%) 64.23% 61.45% 59.78% —

Profit Factor 1.87 1.72 1.64 —

Training Time (minutes) 183.7 - - -
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Inference Time (ms/sample) 6.8 7.1 7.3 -

Head Primary Focus Mean Weight Effective Time Horizon Interpretation

Head 1 Short-term patterns 0.1456 1-3 days Short-term patterns

Head 2 Medium-term trends 0.1389 5-10 days Medium-term trends

Head 3 Long-term dependencies 0.1267 15-30 days Long-term dependencies

Head 4 Volatility clustering 0.1198 3-7 days Volatility clustering

Head 5 Cross-asset correlations 0.1123 Concurrent Cross-cryptocurrency correlations
Head 6 Sentiment signals 0.0987 2-5 days Sentiment signals

Head 7 Technical indicators 0.0945 1-5 days Technical indicators

Head 8 On-chain metrics 0.0912 7-14 days On-chain metrics

Overall average - 0.1160 - Balanced distribution of attention
Model RMSE MAE R2 MAPE (%)  Dir. Acc. (%)  Parameters Rank Training Time (minutes)
Transformer 0.0276  0.0201 0.8067 4.21 74.23 54,532,609 1 183.7
CNN-LSTM-Attention 0.0289 0.0213  0.7934  4.56 72.89 420,929 2 47.3

Bi-LSTM 0.0312 0.0234 0.7756  4.89 71.45 385,642 3 56.8

GRU-Attention 0.0334  0.0256  0.7456  5.34 69.78 298,473 4 42.5

Temporal CNN 0.0356  0.0278  0.7234  5.78 68.23 512,834 5 38.9

Result: the Transformer has the best accuracy but requires higher computational cost.

The Transformer model, designed around the multi-head attention mechanism, exhibits the best predictive
performance among single models by achieving the highest explanatory power (R?) (over eighty percent) and
directional accuracy (over seventy-four percent). In financial metrics such as the Sharpe Ratio and maximum
drawdown, the model also performs strongly, indicating its ability to deliver higher returns with lower risk. The
attention heads in the Transformer model successfully distribute focus across different aspects of the data. Some
heads concentrate on short-term patterns, others on medium- and long-term trends, and others on volatility
clustering and cross-asset correlations. This multi-faceted attention capability is the key to the model’s superiority
in modeling the complex time series of the market. However, it should be noted that this high accuracy comes with
very high computational cost (due to the very large number of parameters and lengthy training time). The
Transformer surpasses other deep learning models by a comfortable margin and ranks first in predictive accuracy.

Table 24. Hybrid Model (SDM + CNN-LSTM-Attention + GNN + Transformer)

Stage Method Input Output Parameters Role

Stagel  Spatial SDM Core variables + W Linear coefficients + 187 Extraction of structural
residuals relations

Stage CNN-LSTM- SDM residuals + Nonlinear temporal 420,929 Complex temporal patterns

2a Attention variables forecasts

Stage GNN Graph structure + Network-relationship 107,890 Nonlinear spatial relations

2b features forecasts

Stage Transformer Time series Long-dependency forecasts 54,532,609  Long-term dependencies

2c

Stage3  Ensemble (weighted) 4 predictions Final prediction 4 weights Optimal combination

Total — - - 55,061,615 -

Model Optimal Weight (y) Standard Deviation 95% Confidence Interval Share in Prediction (%)

Spatial SDM 0.2845 0.0123 [0.2604, 0.3086] 28.45

CNN-LSTM-Attention 0.3167 0.0156 [0.2861, 0.3473] 31.67

GNN 0.1923 0.0134 [0.1660, 0.2186] 19.23

Transformer 0.2065 0.0145 [0.1781, 0.2349] 20.65

Total 1.0000 - - 100.00

Metric Train Set Validation Set Test Set Improvement over Best Single Model (%)
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MAE 0.0134 0.0165 0.0178 11.44% | (vs Transformer)
RMSE 0.0198 0.0234 0.0256 7.25% | (vs Transformer)
MAPE (%) 2.78% 3.34% 3.67% 12.83% | (vs Transformer)
R? Score 0.8923 0.8645 0.8467 4.96% 1 (vs Transformer)
Directional Accuracy (%) 82.34% 79.12% 77.45% 4.34% 1 (vs Transformer)
Sharpe Ratio 2.87 2.65 2.48 13.76% 1 (vs Transformer)
Max Drawdown (%) -9.23% -11.34% -12.89% 14.75% | (vs Transformer)
Sortino Ratio 3.67 3.34 3.12 17.74% 1 (vs Transformer)
Information Ratio 2.34 2.12 1.98 22.22% 1 (vs SDM)
Calmar Ratio 245 2.23 2.08 31.20% 1 (vs GNN)

Key result: the hybrid model outperforms single models across all metrics.

Analysis Dimension

Finding

Numerical Value Interpretation

Variance Explained by SDM

Share of the linear model

28.45%

Interpretable structural effects

Variance Explained by DL Share of deep models 71.55% Complex nonlinear patterns
Complementarity Effect Synergy among models +15.23% Improvement due to combination
Overfitting Risk Train-Test Gap 5.11% Controlled and acceptable

Computational Cost

Total training time

394.2 minutes

Acceptable for high accuracy

Inference Speed

Average prediction time

8.7 ms/sample

Suitable for real-world use

Robustness to Noise

Performance with 10% noise

R2=0.8123

Robust to noise

The hybrid model, combining four core models (spatial model, CNN-LSTM-Attention, Graph Neural Network,

and Transformer), has leveraged the complementary advantages of each. The optimal weights show that CNN-

LSTM-Attention and the spatial model have the highest shares in the final prediction due to their ability to model

short-term and structural patterns of the market. The hybrid model exhibits significant improvements over the best

single model (the Transformer) in all performance metrics (error reduction, higher R?, and higher directional

accuracy) as well as in financial metrics (higher Sharpe Ratio and lower maximum drawdown). This improvement

indicates strong synergy among models, whereby their combination yields substantial gains in the accuracy and

resilience of the final model. The hybrid model shows that a large portion of the variance is explained by deep

learning models (about seventy percent), reflecting the nonlinear and complex nature of cryptocurrency market

dynamics. Nevertheless, the spatial model’s share (about twenty-eight percent) is essential for extracting

interpretable structural and spatial relations, and combining these two components produces a robust and

comprehensive predictive framework.

Table 25. Comprehensive Comparison of Econometric and Machine Learning Models

Model RMSE MAE R? MAPE (%) Dir. Acc. (%) Sharpe Info Ratio Parameters
Hybrid Model 0.0256 0.0178 0.8467 3.67 77.45 2.48 1.98 55,061,615
Transformer 0.0276 0.0201 0.8067 4.21 74.23 2.18 1.62 54,532,609
CNN-LSTM-Attention 0.0289 0.0213 0.7934 4.56 72.89 1.98 1.52 420,929
GNN 0.0312 0.0245 0.7712 5.12 70.45 1.78 1.32 107,890
SDM 0.0234 0.0189 0.7234 3.89 71.23 1.87 1.87 187

SAR 0.0289 0.0223 0.6812 4.67 68.34 1.65 1.54 156

SEM 0.0312 0.0245 0.6534 5.12 66.78 1.52 143 142
Bi-LSTM 0.0334 0.0267 0.7456 5.34 69.78 1.76 1.48 385,642
GRU-Attention 0.0356 0.0289 0.7234 5.78 68.23 1.65 1.38 298,473
Random Forest 0.0412 0.0334 0.6534 7.12 64.56 143 1.25 500 trees
XGBoost 0.0398 0.0323 0.6712 6.89 65.34 151 1.31 1000 trees
Comparison Hybrid Best Single Model Absolute Relative Improvement Significance
Criterion Model Improvement (%) Level

34



Business, Marketing, and Finance Open, Vol. 3, No. 2

RMSE 0.0256 0.0234 (SDM) +0.0022 -8.59% p <0.05
MAE 0.0178 0.0189 (SDM) -0.0011 -5.82% | p<0.01
R2 0.8467 0.8067 (Transformer)  +0.0400 +4.96% 1 p <0.001
MAPE 3.67% 3.89% (SDM) -0.22% -5.66% | p<0.01
Directional Accuracy  77.45% 74.23% (Transformer)  +3.22% +4.34% 1 p <0.001
Sharpe Ratio 248 2.18 (Transformer) +0.30 +13.76% 1t p<0.01
Information Ratio 1.98 1.87 (SDM) +0.11 +5.88% 1 p<0.05
Max Drawdown -12.89% -15.12% +2.23% +14.75% | p<0.05
(Transformer)

The comprehensive comparison across spatial econometric models, traditional machine learning models, and
deep learning models clearly confirms the superiority of the hybrid model in all dimensions. The hybrid model
achieves the best performance —by a statistically significant margin—in metrics such as explanatory power (R?),
directional accuracy, and especially financial metrics (Sharpe Ratio and Information Ratio). This demonstrates that
combining methodologies is a superior strategy for accurate return forecasting and risk management in
cryptocurrency markets. In particular, deep learning models (Transformer and CNN-LSTM-Attention) outperform
spatial econometric models (such as the Spatial Durbin Model) and traditional models (such as Random Forest).
However, the hybrid model’s relative improvement over the best single model (Transformer) on key metrics

underscores the importance of intelligently combining linear and nonlinear tools.

4. Discussion and Conclusion

This study set out to integrate spatial econometrics with advanced deep learning to forecast cryptocurrency
returns and volatility, quantify direct and indirect (spillover) effects, and translate predictions into risk-aware
portfolio signals. The empirical findings are consistent and robust across extensive diagnostics. First, the Spatial
Durbin Model (SDM) dominates alternative spatial and non-spatial panel specifications for both returns and
volatility. The spatial autoregressive parameter is positive and highly significant for returns (approximately o =
0.46) and for volatility (approximately o = 0.39), indicating economically large cross-asset propagation. The
decomposition clarifies that most economically meaningful covariates —technical indicators (e.g., MACD, RSI), on-
chain fundamentals (hash rate, active addresses, transactions), and sentiment/attention —exert statistically and
economically significant direct effects on a given asset’s return, with additional, comparably sized indirect (spatial)
effects on related assets. In contrast, the network value to transactions ratio (NVT) loads negatively both directly
and via spillovers, consistent with a valuation-overstretch interpretation. For volatility, the signs reverse on key
behavioral and foundational drivers: stronger positive sentiment and greater network security (hash rate) are
associated with lower volatility locally and via spillovers, whereas trading intensity (volume) and network
congestion (fees) raise volatility. Macro factors transmit strongly: equity-market volatility (including proxies such
as VIX) and S&P 500 volatility raise crypto volatility with sizable spillovers; dollar strength and policy-rate
surprises are net headwinds for returns in direct effects and, to a lesser degree, via cross-asset propagation.
Directional connectedness reveals a clear hierarchy: Bitcoin and Ethereum are persistent net transmitters of return
and volatility shocks; several platform and DeFi tokens are net receivers. Systemic-risk analytics (e.g., SRISK, MES,
ACoVaR) show concentration—Bitcoin and Ethereum jointly account for a majority share —underscoring that
shocks to these anchors travel widely. Cycle-sensitive connectedness (Diebold—Yilmaz indices) increases sharply
during booms and crises, and a regime classifier attains high accuracy in recognizing calm, bull, bear, and crisis

states. On the predictive dimension, attention-augmented CNN-LSTM, graph neural networks (GNNS5s), and a time-
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series transformer all outperform single-architecture baselines; an ensemble meta-learner that stacks spatial and
deep components achieves the strongest statistical and investment performance. Attention weights highlight
MACD, active addresses, Google Trends, and spatial lag of returns as top contributors, while the GNN strengthens
economically plausible edges and raises the graph’s average edge weights and clustering.

These results align with and extend a broad literature on the financial economics of crypto assets. Survey
evidence documents that Bitcoin and leading tokens display time-varying correlations, heavy tails, and regime
dependence, with diversification benefits that compress during stress; our spillover estimates and regime-
dependent connectedness echo these stylized facts [5]. Closely related syntheses emphasize that crypto markets
exhibit event-driven dynamics, microstructure frictions, and protocol-specific shocks, motivating models that can
adapt across states rather than rely on single-regime linear restrictions—an approach our hybrid spatial-deep
framework operationalizes [6]. On the macro-policy margin, the expanding discussion of central bank digital
currencies reframes the architecture of payments and settlement; although our focus is on non-sovereign tokens,
the policy layer helps explain evolving transmission channels between digital assets and legacy financial
infrastructure [7]. At the firm level, evidence that crypto exposure conditions liquidity management and corporate
buffers is consistent with our finding that marketwide volatility and policy shocks propagate measurably across
tokens [8]. More generally, the interpretation that crypto markets are embedded within broader financial,
technological, and regulatory regimes 1is consistent with analyses of technological evolution,
accounting/recognition challenges for virtual assets, and the long arc of currency innovation [1, 2, 9, 10].

The content of our covariates and their signs correspond closely to prior evidence on drivers of prices and
volatility. Studies show that crypto returns co-move with U.S. equities and gold through nonlinear dependence
structures; our positive direct and spillover effects from equity returns and negative sensitivity to a strengthening
dollar fit this picture [12, 13]. Behavioral proxies—search intensity and social engagement—have been found to
carry predictive content for returns and volume; our positive coefficients on Google Trends and sentiment for
returns, together with their volatility-reducing roles, match this mechanism [14, 25]. On-chain fundamentals such
as hash rate, difficulty, and active addresses proxy for network security and usage; their positive effects on returns
and dampening effects on volatility are consistent with valuation-through-adoption channels [26, 27]. Our negative
loadings on NVT reinforce the interpretation of NVT as a valuation ratio whose elevation (price rising faster than
transaction throughput) portends lower subsequent returns [26]. Finally, policy-uncertainty and accounting
frictions around crypto recognition have been linked to risk premia and valuation dispersion, providing a plausible
backdrop for the cross-sectional heterogeneity in our spatial effects [11].

Cross-market and cross-asset propagation in our SDM is also consistent with multi-market spillover studies.
Work applying time-varying parameter VARs to exchange rates, cryptocurrencies, and equity indices finds
economically large and state-dependent return transmissions; our positive and significant spatial lag coefficients
and regime-conditioned differences mirror these findings and extend them by explicitly modeling dynamic spatial
weight matrices [28]. Systemic-risk concentration in anchor assets (Bitcoin, Ethereum) is in line with portfolio
studies showing that naive diversification can fail in stress states and that optimal allocations must be conditioned
on state-dependent connectedness [24, 29]. At a higher level, research on financialisation notes that the rise of crypto
assets deepens interconnections with global markets, a structural force that makes spatial modeling especially apt
[4]. Technological diffusion in fintech helps to explain the rapid co-movement channels—exchanges, bridges, and

custodial venues—that our estimated weight matrices implicitly capture [3]. The jurisprudential and design
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heterogeneity across tokens (including asset-backed and sovereign experiments) also help rationalize why
spillovers may differ by token class, as our sub-sample analysis shows [34].

The regime results are particularly informative. We find that spillovers intensify in bull and crisis regimes and
are comparatively muted in calm or consolidating periods. This is consistent with event-sensitive syntheses and
with policy analyses warning that crypto can amplify instability through leverage, liquidity mismatches, and run
dynamics—channels that, when triggered, propagate system-wide [6, 30]. Our high regime-classification accuracy
suggests that observable covariates (technical, on-chain, macro, sentiment) provide sufficient signal to separate
states, which is necessary for effective regime-aware portfolio construction and risk oversight [24, 29]. The volatility
findings —sentiment and security diminish volatility; volume and fees increase it; VIX and equity-market volatility
spill in—are consistent with comparative volatility assessments that position crypto as a high-beta, regime-sensitive
asset whose risk intensifies with macro uncertainty [12, 15]. The stronger spatial parameter at longer aggregation
horizons (weekly/monthly) indicates that transmission requires time to propagate —a pattern consistent with the
gradual diffusion of information and capital across venues and investor types [5].

On forecasting, our hierarchy of model performance corroborates a growing consensus: nonlinear deep
networks —GRU, LSTM, CNN-LSTM —outperform linear baselines, and hybrids with attention or decomposition
layers deliver further gains [17-20, 22]. Comparative analyses that pit ensemble learners against deep learning
likewise report that stacked or hybrid designs are hard to beat, especially when they integrate multiple temporal
encoders and noise-reduction techniques [21, 32]. Our results echo recent transformer-era studies for Bitcoin and
major tokens, where attention mechanisms that learn long-range dependencies and cross-factor interactions lead to
step-change improvements [31, 33]. The GNN’s contribution—strengthening economically meaningful edges,
increasing clustering, and improving predictions—confirms the value of explicitly modeling network topology,
which classic time-series nets overlook. Finally, reinforcement-learning approaches that convert forecasts into
execution and allocation decisions resonate with our portfolio evaluation and risk-adjusted metrics, mirroring
earlier demonstrations that policy-gradient and Q-learning methods can learn profitable digital-asset trading
policies under transaction costs and slippage [23, 24].

Behaviorally, the estimated spatial structure is consistent with herding and leadership effects. Evidence of
investor herding in digital assets provides a behavioral channel for why shocks to large-cap tokens (Bitcoin,
Ethereum) reverberate broadly; our directional connectedness table showing these assets as net transmitters maps
naturally into that narrative [35]. Dynamic conditional correlation (DCC) and causality studies across
cryptocurrencies similarly show that correlations and causal influence vary through time and across token classes —
features our regime and sub-sample analyses reproduce and extend [36, 37]. From an inclusion perspective, the
finding that attention shocks can reduce volatility —by stabilizing trading and deepening order books in high-
interest periods—intersects with arguments that broader participation and infrastructure maturation can foster
more resilient markets, particularly in emerging contexts [16]. At the same time, accounting and policy uncertainties
remain material; our systemic-risk concentration and macro-spillover results provide a quantitative frame for
understanding why recognition, measurement, and disclosure standards for virtual assets remain an active area of
debate [7, 10, 11]. Ultimately, the foundational question of whether Bitcoin is “money” or a speculative asset is
empirically elastic across regimes —an observation consistent with early economic appraisals and with technology-
focused treatments that emphasize design over labels [1, 2].

Taken together, the evidence supports three core conclusions. First, cross-asset dependence in crypto is first-

order: ignoring spatial spillovers materially understates both predictive signal and systemic risk. Second, the
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information set that matters is inherently multi-source —technical, on-chain, sentiment, and macro—and the signs
of effects differ between generating returns and modulating risk, a separation that should inform model design and
portfolio policy. Third, hybridization—spatial structure plus deep nonlinear encoders—delivers both
interpretability (via direct/indirect effects and regime diagnostics) and accuracy (via attention, graph propagation,
and transformers), enabling risk-adjusted outperformance over strong single models.

This study uses a curated set of leading cryptocurrencies and reputable data providers, but token coverage,
exchange selection, and survivorship can still bias inference. Dynamic spatial weight matrices, while economically
motivated, remain approximations; alternative constructions (e.g., order-book linkages or cross-venue arbitrage
flows) could change estimated spillovers. Although we employ robust errors, diagnostics, and multiple out-of-
sample tests, distributional shifts and unobserved confounders cannot be fully eliminated. Deep models are
sensitive to hyperparameters and training regimes; despite careful tuning and regularization, overfitting risk
persists, especially around rare regime transitions. Finally, backtests —even with transaction-cost modeling—
cannot replicate all facets of live execution, slippage in stressed liquidity, or the impact of position limits and
regulatory constraints.

Future work could extend token coverage to long-tail assets, non-EVM ecosystems, and cross-chain protocols,
and incorporate order-book microstructure to refine spatial weights. Joint modeling of returns, realized volatility,
and liquidity (depth/impact) may better capture risk transmission. Causal identification—through natural
experiments (e.g., protocol upgrades) or instrumental designs—could sharpen structural interpretations. On the
modeling side, diffusion models and state-space transformers, combined with probabilistic forecasting, may
improve calibration of tail risks. Finally, deploying live, capital-constrained experiments would test the external
validity of hybrid signals under execution, compliance, and risk-budget constraints.

Practitioners should treat crypto portfolios as networked systems: size exposures to account for both direct
sensitivities and spillovers, and escalate risk controls in regimes where connectedness rises. Combine technical, on-
chain, sentiment, and macro signals, but separate “return” and “risk” levers—behavioral and on-chain strength can
raise expected return while lowering volatility. Use regime detection to gate leverage and turnover, and prefer
ensemble hybrids over single models to mitigate model risk. For systemic concentration, stress test scenarios

centered on Bitcoin and Ethereum and build hedges and liquidity buffers accordingly.
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