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Abstract: This study aims to design a Comprehensive Stress Index (SSI) for the Tehran Stock
Exchange using multivariate GARCH models (DCC-MGARCH) and machine learning
(Random Forest) and to examine its causal relationship with the gold coin and foreign
exchange markets. Daily time series data of selected Tehran Stock Exchange indices from
November 22, 2014, to November 21, 2024, were collected and analyzed. First, the systemic
risk (ACoVaR) of each index was calculated; then, the optimal weights were determined using
the Random Forest model, and the SSI was constructed following the methodology of Holo
and colleagues (2012). Stability, shock, and predictability tests confirmed the validity of the
index. The Granger causality test revealed a significant one-way causal relationship from the
foreign exchange market to the SSI (p-value = 0.028), while no significant relationship was
observed with the gold coin market. These findings highlight the influence of exchange rate
fluctuations on the systemic risk of the stock market and provide a useful tool for
policymakers.

Keywords: Comprehensive Stress Index (SSI), DCC-MGARCH model, machine learning,
Granger causality test, gold coin market, foreign exchange market

1. Introduction

Systemic risk—the possibility that distress in one part of the financial system
propagates through interconnections and shared exposures to threaten the
functioning of the whole—has moved from an abstract concern to a core object of
empirical measurement and policy design over the past decade and a half [1, 2]. The
challenge is especially acute in emerging markets, where macro-financial linkages to
exchange rate regimes, commodity cycles, and policy uncertainty can amplify shocks
and produce nonlinear market dynamics [3, 4]. Against this backdrop, constructing a

timely, market-wide stress indicator that integrates volatility, co-movement, and

cross-market spillovers can provide early-warning signals and actionable guidance for regulators, institutional

investors, and corporate treasurers. The present study addresses this need by developing a Comprehensive Stress

Index (SSI) for the Tehran Stock Exchange (TSE) that combines a systemic risk contribution metric (ACoVaR),

dynamic conditional correlations from a DCC-MGARCH model, and data-driven weights learned via supervised
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machine learning, and by testing causal links between the SSI and the foreign exchange and gold coin markets [5-
7].

Conceptually, systemic stress arises when common risk factors and networked exposures become synchronized,
so that the joint distribution of losses features fat tails and time-varying dependence that traditional Gaussian
assumptions fail to capture [1]. Composite indicators such as the CISS of the European Central Bank operationalize
this idea by aggregating sub-market stresses with time-varying correlation structures to reflect the system’s state
in real time [5]. Our approach follows this composite-indicator tradition but tailors it to the institutional and
behavioral characteristics of Iran’s capital market, where exchange-rate pass-through, sanctions episodes, and
commodity sensitivities can jointly drive market-wide turmoil [8, 9]. By emphasizing conditional co-movements
alongside tail risk contributions, the proposed SSI aims to separate idiosyncratic volatility from truly systemic
episodes.

Methodologically, the study leverages advances in both econometrics and machine learning. On the econometric
side, DCC-MGARCH captures time-varying second moments and delivers a conditional correlation matrix that is
essential for measuring contemporaneous clustering of risk across sectors [10]. On the machine-learning side,
interpretable and predictive models can be used to derive economically meaningful aggregation weights and to
validate the index’s out-of-sample utility [6, 7]. Prior work demonstrates that machine-learning pipelines, including
tree ensembles, support vector machines, and neural networks, can enhance forecasting and causal attribution in
financial stress diagnostics, often outperforming linear benchmarks when relationships are nonlinear or state-
dependent [11-13]. We adopt this evidence-based stance by using a supervised learner to map sectoral Value-at-
Risk signals into composite weights while maintaining transparency about variable importance to satisfy
interpretability requirements for risk governance [3, 6].

The TSE offers a compelling laboratory for systemic-risk measurement for at least three reasons. First, macro-
financial linkages to the foreign exchange market are strong, and exchange rate shocks can rapidly reprice export-
oriented sectors, import-dependent input costs, and investors’ risk premia [8, 14]. Second, sanctions and
geopolitical events may act as external shocks that propagate simultaneously through currency, gold, and equity
markets, generating complex spillover patterns [9]. Third, behavioral and institutional features —such as investor
sentiment waves, life-cycle heterogeneity across firms, and decision biases under uncertainty —can intensify boom-
bust cycles and correlation spikes [15-18]. Together, these characteristics underscore the importance of a composite
stress barometer that is sensitive to both cross-sectional co-movements and tail co-exceedances.

A growing Iranian literature has examined stress transmission and macro-financial interactions with a variety
of tools. Time-varying Granger causality and regime-switching volatility models document that currency and gold
markets can predict equity stress in certain periods, consistent with safe-haven and pass-through channels [8, 14].
Sector-level analyses find that financial stress depresses industry returns heterogeneously, suggesting that systemic
episodes reweight market leadership and liquidity across the cross-section [19]. Investor-level studies highlight the
roles of sentiment, analytical paralysis, and environmental drivers in shaping order flow and risk-taking,
particularly during high-uncertainty regimes [15, 17, 18]. Complementing these strands, recent work proposes
machine-learning-based volatility or stress indices for emerging markets, showing that learned indicators can track
uncertainty and improve nowcasting of market conditions [20]. Our study integrates these themes by unifying (i)
tail risk contributions (ACoVaR), (ii) dynamic correlations (DCC-MGARCH), and (iii) data-driven importance

weights, then validating the resulting SSI against currency and gold markets through causality tests.



Business, Marketing, and Finance Open, Vol. 3, No. 2

International evidence also motivates our design choices. Machine-learning-enhanced systemic-risk
measurement can explicitly model nonlinearities and interactions, improving early-warning performance while
retaining tractability via importance scores or partial-dependence diagnostics [6, 7]. Network-centric analyses
emphasize how liquidity conditions and interbank or cross-asset ties propagate stress, advocating indicators that
embed correlation dynamics and market-microstructure signals [10]. At longer horizons, market-wide shocks are
informative about real activity, highlighting the macro relevance of timely stress measures [4]. Over even broader
windows, technological shocks can reshape volatility regimes, calling for adaptable models that can absorb regime
changes in factor structure and information flows [21]. Our composite approach —time-varying dependence plus
machine-learning aggregation —aligns with these insights.

This systemic-risk agenda is not merely academic. Policymakers increasingly require operational tools to
monitor, communicate, and govern systemic risk —tools that balance interpretability, timeliness, and robustness
across stress regimes [2, 3]. In this spirit, the SSI's design reflects three governance considerations. First, the index
weights should be empirically grounded yet explainable, so that shifts in sectoral contributions can be audited and
discussed with stakeholders [6]. Second, dependence must be modeled conditionally, since correlation spikes are
themselves indicators of system fragility [5]. Third, out-of-sample validation should include stress-testing and
causal benchmarking against key macro-financial markets (FX and gold), which act as shock transmitters or buffers
in the Iranian context [8, 9].

Our study also builds on recent Iranian advances in feature construction and return decomposition for the TSE.
Novel composite variables extracted from microstructure and corporate information have been shown to enhance
the explanatory power for stock returns, suggesting that data engineering can unlock hidden risk channels specific
to local markets [22]. We extend this logic to systemic risk by constructing sector-level ACoVaR features and letting
an interpretable learner discover their optimal aggregation into a market-wide stress gauge. In parallel, firm-level
life-cycle effects have been linked to systematic risk, implying that sector compositions —and thus their systemic
footprints —evolve as cohorts of firms mature [16]. Our weighting scheme is thus re-estimated on rolling windows
to remain sensitive to such structural drift.

The behavioral and policy environment further motivates an SSI with predictive aspirations. Decision frictions
such as analytical paralysis can slow reaction to information, producing clustered order imbalances and momentum
in stress states [17]. Environmental drivers and sentiment can synchronize investor behavior, raising conditional
correlations even when fundamentals diverge [15, 18]. Meanwhile, economic policy uncertainty has been shown to
degrade liquidity and stability in TSE firms, especially during macro shocks [23]. These forces collectively create
conditions in which a composite stress indicator can add practical value by flagging impending co-exceedances
before volatility fully materializes.

Technically, our modeling choices are guided by evidence on predictive performance in related domains. For
stock-index prediction tasks, feature-weighted support vector machines and hybrids with nearest-neighbor kernels
have demonstrated robust accuracy under nonlinearity and noise [12]. In cryptocurrency markets characterized by
heavy tails and regime shifts, deep learning architectures that explicitly incorporate error dynamics improve
forecasts, underscoring the payoff to flexible, heteroskedastic-aware models [13]. In banking stress applications,
machine-learning causality analysis reveals nontrivial directionalities, validating the use of ML as a complement to
traditional econometric inference [11]. Consistent with these findings, we employ a tree-based supervised learner
to derive SSI weights from sectoral risk features while estimating DCC-MGARCH to obtain the system’s evolving

dependence structure [7, 10].
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Empirically, we also situate our contribution within the Iranian macro-financial literature that measures how
stress propagates across equity, currency, and gold markets. Time-varying causality analyses indicate that the FX
market can lead equity stress in specific windows, while the gold market’s role may be state-contingent, behaving
as a hedge or co-movement driver depending on macro narratives [8]. At the sector level, financial stress depresses
returns unevenly across industries, consistent with a risk-reweighting mechanism that our SSI seeks to quantify
and track [19]. Under sanctions, shock spillovers intensify and persistence increases, which motivates the use of
conditional correlations rather than static dependence [9]. Finally, proposals for market-wide volatility or
uncertainty indices in emerging markets show that ML-based composites can serve as monitoring tools that
complement policy communication and risk supervision [20].

In summary, the current study aims to design a Comprehensive Stress Index (SSI) for the Tehran Stock Exchange
using multivariate GARCH models (DCC-MGARCH) and machine learning (Random Forest) and to examine its

causal relationship with the gold coin and foreign exchange markets.

2.  Methodology

To prepare the variables required for testing the research hypotheses, Microsoft Excel was utilized. First, the
collected data were entered into spreadsheets in this software. Then, the necessary calculations were performed to
extract the variables under study. After completing the computations and preparing the essential variables for the
research models, these variables were integrated into a single consolidated worksheet to be ready for transfer to
the final analysis software.

Statistical analyses in this study are conducted using R software, version 4.3.1. The statistical population of the
research consists of daily time series data from selected indices of the Tehran Stock Exchange, collected over a ten-
year period from November 22, 2014, to November 21, 2024.

After extracting and aligning the time stamps of the data, the logarithmic return for each index was calculated
using the following formula:

R_t=1In(P_t/P_(t-1)) x 100

The research variables and their respective symbols are presented in Table 1. To facilitate the workflow within
the software, variables were assigned symbols.

Table 1. Description of Research Variables

Variable Name Symbol Variable Name Symbol
Investments Investments Total Equal-Weighted Index Total
Information Technology IT Agriculture Agriculture
Machinery Machinery Banks Banks
Metal Ore Metal ore Base Metals Base metals
Metal Products Metal products Insurance and Pensions Bimeh
Multi-Industry Multi_Task Automotive Car

Non-Metallic Minerals
Paper Products
Petroleum Products
Pharmaceutical Materials
Plastic and Rubber
Cement

Textiles

Non-metallic minerals
Paper products
Petroleum products
Pharmaceutical materials
Plastic

Cement

Textiles

Ceramic Tiles

Chemical Products

Coal

Electrical Devices

Food (excluding sugar)
Real Estate & Construction
Sugar

Ceramic tiles
Chemical products
Coal
Electrical_Devices
Foods

RealEstate

Sugar

Source: Research findings
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To measure systemic risk, the ACoVaR metric was employed using the multivariate GARCH approach with
dynamic conditional correlation (DCC-MGARCH), as expressed in the following formula:
ACoVaR_it(a) = y_it [VaR_it(a) — VaR_it(0.5)]
v_it=(o_it x o_mt) / o_it
In the above formula:
o_mt, o_it, and o_it represent, respectively, the conditional standard deviation of market returns, the conditional
standard deviation of firm i, and the conditional correlation coefficient between market returns and firm i’s returns
at time t. These are extracted from the conditional variance—covariance matrix derived from the DCC-MGARCH
model.
H_t=
[ [o_mt?, o_it o_mt g_it]
[o_it o_mt g_it, 0_it?] ]
Here, H_t is the conditional variance—covariance matrix.
The DCC-MGARCH model can be defined as follows:
rt=u_t+a_t
a_t=H_t"N1/2) z_t
H_t=D_tR tD_t
R_t = diag(Q_t)"(-1/2) Q_t diag(Q_t)"(-1/2)
e_t=D_t"(-1) a_t~ N(0, R_t)
Q=(1/T) Z_(t&=D"T (e_t e_t"T)
Qt=(1-a-b)Q+ae_(t1) e_(t-D T +b Q_(t-1)
Where:
e r_tisan n-dimensional vector of return time series at time ¢.
e a_tis an n-dimensional vector of error terms at time ¢.
e H_tis the nxn conditional variance—covariance matrix of a_t at time ¢.
e H_t"(1/2) is the nxn matrix typically obtained via the Cholesky decomposition of H_t.
e D_tis an nxn diagonal matrix of the conditional standard deviations of a_t at time .
e R _tisthe nxn conditional correlation matrix of a_t at time £.
e 7z tis an n-dimensional vector of standard normal random variables.
e Qs the unconditional covariance matrix of ¢_t.
e ¢_tare standardized but correlated residuals.
e aandb are the DCC parameters, which must satisfy the following two conditions:
1. a20;b20
2. a+bx<l1
Note: In the general formulation above, the residuals are assumed to follow a standard normal distribution;
however, in this study, the Johnson Su marginal distribution is adopted for the residuals.
The variable VaR_it(a) in the ACoVaR formula represents the value-at-risk of firm i at risk level a, calculated

using the conditional standard deviation obtained from the DCC-MGARCH model.
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3. Findings and Results

After calculating the logarithmic returns, descriptive statistics for each variable —including mean, median,
minimum, maximum, standard deviation, skewness, and kurtosis —were computed. The mean is recognized as the
primary measure of central tendency and the balance point of the distribution. The median divides the data into
two equal 50% parts and is often used for asymmetric distributions. The standard deviation indicates the degree of
dispersion around the mean, while skewness measures the asymmetry of the distribution, and kurtosis represents
the sharpness or flatness of the distribution’s peak.

Table 2. Summary of Descriptive Statistics for Research Variables

Variables Observations Min Max Mean Median Std. Dev. Skewness Kurtosis
Total 2407 -4.5 4.37 0.17 0.09 1.08 0.11 1.93
Agriculture 2407 -6.37 12.75 0.15 0 2.19 0.32 1.14
Banks 2407 -12.02 9.83 0.11 -0.03 1.6 0.08 3.76
Base.metals 2407 -8.14 6.48 0.16 -0.01 1.63 0.36 1.84
Bimeh 2407 -6.32 6.1 0.14 -0.02 1.48 0.23 1.29
Car 2407 -6.13 13.52 0.13 0.03 217 0.28 0.95
Ceramic.tiles 2407 9.3 11.25 0.14 0 1.59 0.16 2.69
Chemical.products 2407 -5.85 59 0.15 0.01 1.38 0.29 2.61
Coal 2407 -10.53 19.14 0.15 0 2.78 0.32 1.53
Electrical_Devices 2407 -5.76 9.32 0.14 -0.01 1.56 0.37 2.04
Foods 2407 -5.51 10.15 0.12 0 141 0.18 2.32
Investments 2407 -4.3 9.33 0.12 0.01 1.07 0.92 5.62
IT 2407 -4.93 9.78 0.13 0.01 1.21 0.56 5.16
Machinery 2407 -5.95 6.9 0.14 0.02 1.46 0.17 0.98
Metal.ore 2407 -5.66 9.13 0.14 -0.04 1.66 0.58 2.36
Metal.products 2407 -12.56 10.37 0.1 -0.02 1.87 -0.12 2.01
Multi_Task 2407 -12.44 7.05 0.16 0 1.49 0.13 4.54
Non.metallic.minerals 2407 -12.54 14.03 0.14 0.01 1.53 0.03 5.82
Paper.products 2407 -9.61 8.31 0.07 0 233 0.06 0.1
Petroleum.products 2407 -62.42 8.06 0.14 0.02 2.35 -7.79 208.93
Pharmaceutical.materials 2407 -5.42 5.76 0.15 -0.01 1.22 0.59 293
Plastic 2407 -11.14 11.06 0.14 -0.03 1.78 0.14 2.35
RealEstate 2407 -6.5 6.41 0.11 -0.03 1.72 0.11 0.59
Sugar 2407 -8.12 8.69 0.15 -0.01 1.57 0.3 1.36
Cement 2407 -5.74 5.35 0.15 -0.02 1.33 0.37 1.49
Textiles 2407 -44.98 14.18 0.12 0 2.01 -4.34 106.06

Based on Table 2, after aligning the data temporally, the number of observations reached 2,407 days. The daily
return range of the Total Equal-Weighted Index is from -4.5% to 4.37%, with a mean and median of 0.17% and
0.09%, respectively, and a standard deviation of approximately 1%, indicating return risk. The values of skewness
and kurtosis mostly fall between -2 and 2, suggesting relative symmetry and a near-normal distribution.

The highest standard deviation belongs to the Coal index at 2.78%, indicating higher risk; moreover, this index
could experience up to a 19% positive shock. The Investments index shows the lowest risk with a standard deviation
of 1.07%. The Petroleum Products index exhibits a negative shock of -62%, and the Textiles index shows a wide
fluctuation range from -45% to +14%, identifying them as highly volatile indices. Finally, the Pharmaceutical
Materials index demonstrates a mean return of 0.15% and a standard deviation of 1.38%, with fluctuations between
-6% and +6%, reflecting a moderate risk level.

Table 3. Results of Preliminary Tests
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No. Variables Jarque—Bera Augmented Dickey—Fuller ARCH Effects
Test Test Test
Statistic p- Statistic p- Statistic p-
value value value

1 Total 380.67 0.00 -9.23 <0.01 582.23 0.00
2 Agriculture 171.89 0.00 -10.94 <0.01 350.30 0.00
3 Banks 1428.24 0.00 -10.53 <0.01 561.07 0.00
4 Base.metals 392.79 0.00 -10.41 <0.01 567.05 0.00
5 Bimeh 188.66 0.00 -10.67 <0.01 563.50 0.00
6 Car 121.72 0.00 -10.10 <0.01 221.83 0.00
7 Ceramic.tiles 739.99 0.00 -10.79 <0.01 379.35 0.00
8 Chemical.products 720.49 0.00 -10.74 <0.01 688.77 0.00
9 Coal 277.52 0.00 -12.90 <0.01 246.66 0.00
10 Electrical_Devices 473.64 0.00 -10.60 <0.01 344.67 0.00
11 Foods 553.67 0.00 -9.59 <0.01 458.35 0.00
12 Investments 3513.56 0.00 -9.20 <0.01 801.41 0.00
13 1T 2801.63 0.00 -10.93 <0.01 837.84 0.00
14 Machinery 108.84 0.00 -9.93 <0.01 393.97 0.00
15 Metal.ore 696.72 0.00 -10.23 <0.01 607.07 0.00
16 Metal.products 412.85 0.00 -10.79 <0.01 348.87 0.00
17 Multi_Task 2080.36 0.00 -10.14 <0.01 634.58 0.00
18 Non.metallic.minerals 3406.22 0.00 -10.40 <0.01 386.33 0.00
19 Paper.products 2.55 0.28 -10.74 <0.01 243.09 0.00
20 Petroleum.products 4409507.61 0.00 -11.15 <0.01 403.22 0.00
21 Pharmaceutical.materials  1003.37 0.00 -10.71 <0.01 883.34 0.00
22 Plastic 565.18 0.00 -11.20 <0.01 389.92 0.00
23 RealEstate 39.97 0.00 -10.80 <0.01 397.95 0.00
24 Sugar 221.68 0.00 -11.31 <0.01 347.32 0.00
25 Cement 278.52 0.00 -10.34 <0.01 604.84 0.00
26 Textiles 1137590.21 0.00 -11.88 <0.01 754.24 0.00

As shown in the table above, the p-values of the Jarque-Bera normality test for the logarithmic returns of all
indices, except for the Paper Products index, are equal to zero, indicating that the return distributions for most
indices are non-normal, with the exception of Paper Products.

In addition, the p-values for the Augmented Dickey—Fuller (ADF) unit root tests and the ARCH effects tests for
all indices are less than 0.05, which respectively confirm the stationarity of the time series of logarithmic returns
and the presence of heteroskedasticity effects in these series.

Before conducting multivariate GARCH modeling with the Dynamic Conditional Correlation (DCC) approach,
it is necessary to first test the correlation dynamics of each index with the Total Equal-Weighted Index, which
represents the market. To this end, the Engle-Sheppard test was applied, and the results are presented in Table 4.
The null hypothesis of this test indicates constant correlation between the variables; if the null is not rejected, the
Constant Conditional Correlation (CCC) approach should be used. However, as shown in Table 4, the p-values for
all indices are less than 0.05, indicating rejection of the null hypothesis and acceptance of the alternative hypothesis
(dynamic correlation) at the 95% confidence level. Therefore, given the significance of dynamic correlation between
each index and the Total Equal-Weighted Index, the Dynamic Conditional Correlation (DCC) method was
employed to compute volatilities and ACoVaR.

Table 4. Results of the Engle-Sheppard Dynamic Correlation Test

No. Variables Statistic p-value
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1 Agriculture 55.53 0.00
2 Banks 8.78 0.01
3 Base.metals 4294 0.00
4 Bimeh 42.30 0.00
5 Car 13.33 0.00
6 Ceramic.tiles 46.52 0.00
7 Chemical.products 73.73 0.00
8 Coal 27.87 0.00
9 Electrical_Devices 76.82 0.00
10 Foods 65.28 0.00
11 Investments 88.26 0.00
12 1T 29.29 0.00
13 Machinery 19.63 0.00
14 Metal.ore 33.92 0.00
15 Metal.products 29.63 0.00
16 Multi_Task 21.28 0.00
17 Non.metallic.minerals 89.72 0.00
18 Paper.products 46.67 0.00
19 Petroleum.products 16.80 0.00
20 Pharmaceutical.materials 72.97 0.00
21 Plastic 27.87 0.00
22 RealEstate 32.33 0.00
23 Sugar 68.15 0.00
24 Cement 62.98 0.00
25 Textiles 24.03 0.00

To determine the optimal lags of the ARMA models, the Box—Jenkins methodology was applied using the ACF
and PACF analyses and the AIC/BIC criteria. The results are shown in Table 5. Subsequently, the conditional
volatilities were modeled using the DCC-MGARCH model (Engle, 2002). The Johnson SU marginal distribution
was chosen due to its flexibility in modeling skewness, kurtosis, and heavy tails. Unlike the normal or Student’s t
distribution, this distribution better captures asymmetric behavior and extreme financial events, making it suitable
for risk analysis and market simulation.

Table 5. Selected Optimal GARCH Models for Each Index

No. Variables Optimal Model

1 Total ARMA(5,1)-GARCH(1,1)
2 Agriculture ARMA(0,5)-GARCH(1,1)
3 Banks ARMA(4,2)-GARCH(1,1)
4 Base.metals ARMA(2,2)-GARCH(1,1)
5 Bimeh ARMA(1,3)-GARCH(1,1)
6 Car ARMA(5,2)-GARCH(1,1)
7 Ceramic.tiles ARMA(2,2)-GARCH(1,1)
8 Chemical.products ARMA(1,3)-GARCH(1,1)
9 Coal ARMA(2,2)-GARCH(1,1)
10 Electrical_Devices ARMA(4,3)-GARCH(1,1)
11 Foods ARMA(1,3)-GARCH(1,1)
12 Investments ARMA(4,2)-GARCH(1,1)
13 IT ARMA(1,2)-GARCH(1,1)
14 Machinery ARMA(4,0)-GARCH(1,1)
15 Metal.ore ARMA(2,2)-GARCH(1,1)
16 Metal.products ARMA(1,2)-GARCH(1,1)
17 Multi_Task ARMA(1,2)-GARCH(1,1)
18 Non.metallic.minerals ARMA(1,2)-GARCH(1,1)
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19 Paper.products ARMA(1,2)-GARCH(1,1)
20 Petroleum.products ARMA(2,2)-GARCH(1,1)
21 Pharmaceutical.materials ARMA(1,2)-GARCH(1,1)
22 Plastic ARMA(1,3)-GARCH(1,1)
23 RealEstate ARMA(4,1)-GARCH(1,1)
24 Sugar ARMA(1,2)-GARCH(1,1)
25 Cement ARMA(0,4)-GARCH(1,1)
26 Textiles ARMA(1,2)-GARCH(1,1)

After fitting the univariate GARCH models, the conditional variance-covariance matrix of the standardized
residuals of each index with the Total Equal-Weighted Index was constructed to form the DCC structure. This
approach models dynamic correlations precisely (Engle, 2002). The estimation results of the DCC-GARCH model
for the Car index (as an example) and the Total Equal-Weighted Index (representing the market) are shown in Table
6. The results for the remaining 24 indices are provided in the appendix.

Table 6. Estimation Results of the DCC-GARCH Model for the Car Index and the Total Equal-Weighted

Index
Parameters Estimated Coefficient Std. Error t-Statistic p-value
[R_it].mu 0.000446317 0.000774007 0.58 0.56
[R_it].arl 0.235840772 0.021925748 10.76 0.00
[R_it].ar2 0.822125674 0.023288793 35.30 0.00
[R_it].ar3 -0.09477098 0.02769238 -3.42 0.00
[R_it].ar4 0.071250702 0.022257149 3.20 0.00
[R_it].ar5 -0.10921568 0.021229817 -5.14 0.00
[R_it].mal 0.049542234 0.005181897 9.56 0.00
[R_it].ma2 -0.89201853 0.007953069 -112.16 0.00
[R_it].omega 1.06397E-05 1.46241E-06 7.28 0.00
[R_it].alphal 0.084662137 0.009237426 9.17 0.00
[R_it].betal 0.890837555 0.01059689 84.07 0.00
[R_it].skew 0.097839771 0.428781431 0.23 0.82
[R_it].shape 4.545037265 2.024023044 2.25 0.02
[R_mt].mu 0.000564716 0.000617194 091 0.36
[R_mt].arl 1.428109972 0.056522801 25.27 0.00
[R_mt].ar2 -0.56104529 0.084755936 -6.62 0.00
[R_mt].ar3 0.316823443 0.056552779 5.60 0.00
[R_mt].ar4 -0.18466367 0.050097699 -3.69 0.00
[R_mt].ar5 -0.00439443 0.029158847 -0.15 0.88
[R_mt].mal -0.97172369 0.000577109 -1683.78 0.00
[R_mt].omega 9.64487E-07 1.62646E-06 0.59 0.55
[R_mt].alphal 0.199816616 0.04848498 412 0.00
[R_mt].betal 0.799183226 0.045987121 17.38 0.00
[R_mt].skew -0.1762432 0.096763333 -1.82 0.07
[R_mt].shape 1.982699614 0.166826634 11.88 0.00
[Joint]dccal 0.052843332 0.009884818 5.35 0.00
[Joint]dccbl 0.932598695 0.014031333 66.47 0.00
[Jointjmshape 8.735881633 0.870543038 10.03 0.00

Table (6) shows that R_it and R_mt are, respectively, the returns of the Car index and the Total Equal-Weighted
Index (the market proxy). The parameters [R_it].alphal and [R_it].betal (the ARCH and GARCH terms), as well as
the parameters [R_mt].alphal and [R_mt].betal, are statistically significant at the 95% level with p-values less than
0.05. The sum of alphal and betal in both cases exceeds 0.9 and is less than 1, indicating high persistence and strong

stationarity of the conditional variance. The parameters [Joint]dccal and [Joint]dccbl in the DCC model are also
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positive, significant (at the 95% level), and sum to less than 1, which demonstrates the superiority of the dynamic
correlation model over constant-correlation models. A positive [Joint]dccal indicates the sensitivity of conditional
correlation to sudden shocks, and a high [Joint]dccbl indicates long memory and persistence in conditional
correlation. These results confirm the presence of shock and volatility spillover between the two indices with strong
statistical linkage. Therefore, the multivariate GARCH model under the Dynamic Conditional Correlation
approach can be written as follows:

h_11t=1.06397E-05 + 0.084662137 * ¢_(1,t-1)"2 + 0.890837555 * h_(11,t-1)

h_22t = 9.64487E-07 + 0.199816616 * &_(2,t-1)"2 + 0.799183226 * h_(22,t-1)

Q_t=(1-0.052843332 - 0.932598695) * Q + 0.052843332 * &_(t-1) e_(t-1)' + 0.932598695 * Q_(t-1)

(Note: the expression E-05 is scientific notation equal to 107(-5), i.e., 0.000001.) After computing the systemic risk
metric ACoVaR for all indices, the results are reported in Table (7). To calculate each index’s systemic risk, the
Conditional Value-at-Risk contribution (ACoVaR) was used, which measures the impact of an index on overall
market risk under financial stress (Engle, 2002). The average Value-at-Risk (VaR) and ACoVaR for 26 Tehran Stock
Exchange indices over the period from November 22, 2014, to November 21, 2024, were computed and ranked in
Table 7 (Hollo et al., 2012).

Table 7. Ranking Results of Indices Based on Systemic Risk

No. Indices Mean Value-at-Risk (VaR) Mean Systemic Risk (ACoVaR)
1 Car -0.03178 -0.0002

2 RealEstate -0.02483 -0.00019
3 Paper.products -0.03579 -0.00017
4 Metal.products -0.02489 -0.00017
5 Plastic -0.02465 -0.00016
6 Agriculture -0.03236 -0.00016
7 Non.metallic.minerals -0.02052 -0.00016
8 Petroleum.products -0.02683 -0.00015
9 Foods -0.01824 -0.00015
10 Base.metals -0.02237 -0.00015
11 Bimeh -0.01981 -0.00015
12 Machinery -0.02040 -0.00015
13 Banks -0.01989 -0.00014
14 Cement -0.01711 -0.00014
15 Electrical_Devices -0.02103 -0.00014
16 Multi_Task -0.01889 -0.00013
17 Ceramic.tiles -0.02027 -0.00013
18 Chemical.products -0.01654 -0.00012
19 Metal.ore -0.02087 -0.00012
20 Pharmaceutical.materials -0.01321 -0.00012
21 Sugar -0.02178 -0.00011
22 Investments -0.01184 -0.00011
23 IT -0.01381 -9.24E-05
24 Coal -0.03567 -1.58E-05
25 Textiles -0.01385 -1.39E-05

Table 7 indicates that the Car, Real Estate & Construction, Paper Products, and Metal Products indices exhibit
the highest systemic risk (ACoVaR), whereas the IT, Coal, and Textiles indices show the lowest systemic risk. In
terms of stand-alone risk, Paper Products and Coal have the highest average VaR, while Investments has the lowest.

The scatter plot (Figure 1) illustrates the relationship between VaR and ACoVaR.
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Figure 1. Scatter plot of the average Value-at-Risk of indices versus their average systemic risk

The horizontal axis shows the mean VaR at the 95% confidence level, where more negative values indicate higher
stand-alone risk. The vertical axis shows the mean ACoVaR, where more negative values indicate higher systemic
risk. The Car, Paper Products, and Agriculture indices have both high systemic and high stand-alone risk. Textiles
has low risk on both dimensions, whereas Coal, despite low systemic risk, has high stand-alone risk. Investments
and Pharmaceutical Materials, with moderate systemic risk, are low-risk and stable. This analysis is consistent with
Hollo et al. (2012), who emphasize identifying high-risk sectors in stress indices (Hollo et al., 2012).

To determine each index’s importance in driving changes in the Total Equal-Weighted Index, supervised
machine learning was applied. Owing to inter-index linkages, multicollinearity, and potential nonlinearity, three
models—Support Vector Regression, Random Forest, and Artificial Neural Networks —were examined. Random
Forest was selected, and by extracting and normalizing feature importance, the weights of each index were
computed. The input features are the indices” Value-at-Risk (VaR), and the target variable is the market index’s
VaR. The data were split 80% for training and 20% for testing. Table (8) reports the predictive accuracy of the three
models based on the well-known loss functions Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),
which are defined as follows:

MAE=(1/N)*XZ_(i=1toN) ly_i-y_il

RMSE = sqrt( (1/N) * Z_(i=1 to N) (y_i - y_i)"2)

Table 8. Comparison of Machine-Learning Models’ Predictive Accuracy for Market Risk Forecasting

Model Training MAE Testing MAE Training RMSE Testing RMSE
Support Vector Regression (SVR) 0.001369 0.004201 0.002108 0.00547
Random Forest 0.000797 0.00356 0.00111 0.004849
Artificial Neural Network (ANN) 0.006494 0.004533 0.007609 0.005492

The Random Forest model demonstrated higher accuracy and stability —achieving lower Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) relative to Support Vector Regression (SVR) and an Artificial Neural
Network (ANN with one hidden layer and 10 neurons) —and was therefore selected as the optimal model for
determining index importance. Nonetheless, the performance of all three models was relatively close in terms of
accuracy. Feature importance was computed using the percentage increase in Mean Squared Error (MSE), which
indicates the extent to which model accuracy declines when a variable is omitted. Variables whose removal leads
to a substantial increase in MSE are more important. The results of this analysis for each index are presented in

Figure (2).
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Figure 2. Feature-importance plot obtained from the Random Forest model based on percentage change in
error

The plot shows that the Investments and IT indices, each contributing more than 30% to changes in market risk
(Value-at-Risk), have the greatest importance; removing either increases the model error by about 30%. The
importance of other variables is similarly observable. By normalizing this metric, the weights of each index were
calculated.

After calculating the comprehensive risk measure (ACoVaR) for each index and the importance weights of each,
the Comprehensive Stress Index (SSI) can be defined following the methodology of Hollo et al. (2012) as:

SSI_t=(w - ACoVaR_t) C_t (w - ACoVaR_t)'

In this expression, SSI_t is the comprehensive risk index at time ¢; ACoVaR_t is the vector of systemic risk
contributions of the indices at time ¢; w is the vector of importance weights for each index; and C_t is the conditional
correlation matrix among the indices at time ¢, which is obtained from the DCC-MGARCH model. Therefore, the
DCC-MGARCH model was fitted again including all indices but excluding the market index, and the conditional
correlation matrix was extracted. The result of the Engle-Sheppard dynamic correlation test is reported in Table
9).

Table 9. Engle-Sheppard Dynamic Correlation Test for the Indices

Variables Statistic p-value
All indices except market index 2824.146 0.00

Given the statistical significance of the dynamic correlation assumption, the DCC-MGARCH model was fitted
for the indices, and the dynamic conditional correlation matrix was extracted. After obtaining the dynamic

conditional correlation matrix, the stress index was constructed and is shown in Figure (3).
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Figure 3. Comprehensive Stress Index Chart

The Comprehensive Stress Index (SSI) depicts the systemic risk level of the Tehran Stock Exchange. When the

index surpasses the red threshold, it indicates a systemic risk peak where shocks quickly spread across firms within

the indices, leading to market turbulence and sudden changes in the overall index. A key feature of this index is its

ability to provide early warnings before severe market turmoil occurs. Figure (4) shows that high-stress signals

effectively issued timely alerts before market overheating.

Weighted Total Index

Value

Period Step

Figure 4. Total Market Index with Dates When the Comprehensive Stress Index Issued Alerts

Figure (4) presents the SSI stress signals for the Tehran Stock Exchange. The first stress signal was observed on
January 12, 2020, before a substantial rise in the total index, indicating market turbulence preceding its historic
surge. Another signal appeared on March 1, 2020, emphasizing intensified volatility before this upward jump. After
this growth, a strong signal was issued on July 13, 2020, followed by a price correction and market decline. On
February 25, 2023, an intensified stress signal coincided with renewed market growth. In 2023, significant signals
appeared on May 7 and May 14, with the May 14, 2023 signal being the strongest, marking the peak of systemic
risk in the market. These signals confirm the SSI's capability to issue early warnings for upcoming market

turbulence.
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To evaluate the Comprehensive Stress Index, temporal stability, stress analysis, and predictability tests were
performed. The index must remain robust under varying market conditions, across different time horizons, and
during shocks to be considered reliable. Its stability was assessed from three perspectives.

The purpose of temporal stability analysis is to evaluate whether the constructed Comprehensive Stress Index
(5SI) exhibits consistent behavior over different time periods. For this purpose, the dataset was divided into ten
annual subsets, and the equality of the mean index value across these subsets was tested using the nonparametric
Kruskal-Wallis test at a 95% confidence level (5% error rate).

Table 10. Mean Values of the Comprehensive Stress Index Across Annual Periods

Subset Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10
Year 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Mean SSI 2.18E-09 6.37E-10 3.86E-10 1.14E-08 4.67E-08 3.88E-08 1.45E-08 1.89E-08 3.33E-08 9.20E-09

Figure (5) depicts the mean Comprehensive Stress Index (SSI) as an annual time series. As shown, the average
stress level in 2019 and 2020 differs considerably compared to earlier and later years. Levene’s homogeneity of
variance test and the nonparametric Kruskal-Wallis test both confirm the absence of temporal uniformity in the

SSI, indicating distinct index behavior during these critical periods.

Mean of Systemic Risk Index per years

year

Figure 5. Annual Time Series of the Designed Comprehensive Stress Index Over the Study Period

Table 11. Results of Levene’s Homogeneity of Variance and Kruskal-Wallis Mean Equality Test (2015-2024)

Test Degrees of Freedom Test Statistic p-value Result
Levene’s Homogeneity Test 9 54.5 0.00 Null rejected
Kruskal-Wallis Test 9 1298.4 0.00 Null rejected

Levene’s test shows that the null hypothesis of equal variance for the Comprehensive Stress Index (SSI) across
years is rejected at the 95% confidence level with p-value < 0.05, confirming heterogeneity of variance. Similarly,
the nonparametric Kruskal-Wallis test, with p-value <0.05, rejects the null hypothesis of equal mean SSI across the
2015-2024 period. These findings indicate time-varying behavior of the stress index, demonstrating its sensitivity

and dynamic response to changing market conditions and the absence of uniform temporal stability.
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The stress (shock) test examines whether the level of the Comprehensive Stress Index (SSI) under high-tension
market conditions differs significantly from normal conditions and whether this difference depends on the type of
shock (positive or negative).

For this purpose, a shock dummy variable with three levels (normal, positive shock, negative shock) was defined.
This variable was created using statistical quantiles by computing the first quartile (Q1) and third quartile (Q3) of
the total market index return, along with setting upper and lower bands to identify outliers (shocks).

IQR=Q3-0Q1

lower_bound = Q1 - 1.5 * IQR

upper_bound = Q3 + 1.5 * IQR

In the above, Q1 is the first quartile and Q3 is the third quartile. Naturally, return values below the lower band
are flagged as negative shocks and values above the upper band are flagged as positive shocks. The upper threshold
for a positive shock was determined as 2.08% and the lower threshold for a negative shock was determined as
—1.74%; daily returns greater than 2.08% are counted as positive shocks and returns less than —1.74% are counted
as negative shocks. The shock dummy variable with three levels (normal, positive shock, negative shock) was
defined, and its frequency distribution is presented in Table (12).

Table 12. Frequency Distribution of Positive and Negative Shocks in the Total Index Returns

Distribution Negative Shock Normal Positive Shock
Frequency 100 2182 125
Relative Percentage 4% 91% 5%

Table (12) shows that 91% of the total index returns fall within the normal range, while 9% are identified as
abnormal shocks, including 5% positive shocks and 4% negative shocks, with only a 1% difference in frequency.

The Kruskal-Wallis test (Table 13) rejects the null hypothesis of equal mean SSI values across normal and high-
tension (shock) conditions at the 95% confidence level, confirming a significant difference in index behavior across
these states.

Dunn'’s post hoc test (Table 14) was conducted to examine whether positive and negative shocks have the same
effect on the SSI and showed that the SSI values during positive and negative shocks are equal at the 95% confidence
level (p-value = 0.447 > 0.05), indicating similar effects of these shocks on the index.

The boxplot in Figure (6) indicates a larger distance between the mean and the median of the stress index under
high-tension (shock) conditions compared with normal conditions; however, no notable difference was observed
between positive and negative shocks.

Table 13. Results of Homogeneity of Variance and Mean Equality Tests for the Stress Index Across Shock

Levels
Test Degrees of Freedom Test Statistic p-value Result
Levene’s Homogeneity 2 55.168 0.00 Null rejected
Kruskal-Wallis 2 243.24 0.00 Null rejected

Table 14. Results of Dunn’s Post Hoc Test for Pairwise Comparisons Across Shock Levels

Comparisons Mean Rank Difference p-value Result

Normal - Negative Shock -696.09 0.00 Null rejected
Positive Shock — Negative Shock 68.52 0.447 Null confirmed
Positive Shock — Normal 764.51 0.00 Null rejected
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Figure 6. Boxplot of the Comprehensive Stress Index by Shock Level

To assess the ability of the Comprehensive Stress Index (SSI) to predict market shocks, a logistic regression model
was used. The dependent shock variable was defined with two levels (normal and shock), regardless of shock
direction (positive or negative). The objective of this analysis was to examine the causal relationship between the
stress index (as the independent variable) and the occurrence of a shock and to evaluate its predictive power. This
was investigated by fitting a logistic regression model and testing the statistical significance of the beta coefficient.
The logistic regression results are presented in Table (15). The beta coefficient of the stress index is statistically
significant at the 95% confidence level, with p-value <0.05. The positive estimated coefficient (1.657033) indicates a
direct and positive effect of the stress index with a one-day lag on the probability of shock occurrence, such that an
increase in the index value raises the likelihood of a shock.

It should be noted that the stress index variable enters the model as an independent variable with one lag. Thus,
the index value one day earlier is effectively used to predict the current day’s shock.

Table 15. Logistic Regression Estimation Results

Parameters Estimated Coefficient Std. Error z-Statistic p-value
(Intercept) -2.66743 0.088831 -30.0283 0.00
SSI 1.657033 0.154063 10.75558 0.00

Table 16. Logistic Regression Model Evaluation Results

McFadden’s R? AUC Accuracy
0.077 0.801 89.9%

16



Business, Marketing, and Finance Open, Vol. 3, No. 2

ROC Curve
= —
@ —
o
w
z °
=
:‘%
C
@
0 =
L
o™ —
o
= —
o
T T T T T T
1.0 0.8 086 04 0.2 0.0
Specificity

Figure 7. Receiver Operating Characteristic (ROC) Curve

Given the above results, we can conclude that the designed Comprehensive Stress Index has an effect on
predicting the occurrence of market shocks. However, considering the imbalance in the dependent variable
observations (shock), some model adequacy metrics regard the overall fit as moderate, which is to be expected.

In this section, causal relationships between the designed Comprehensive Stress Index and returns in the free
foreign exchange market (free U.S. dollar) and the gold coin market are examined. To analyze these relationships,
data for all three markets were first extracted and their dates aligned. Then, the Granger causality test was used to
assess the presence of causal relationships. The Granger causality test is a statistical method used to examine
whether a causal relationship exists between time series. This test determines whether changes in one time series
can serve as a predictor of changes in another time series. A prerequisite for this test is ensuring the stationarity of
the time series. Accordingly, the Augmented Dickey—Fuller test was performed for the Comprehensive Stress
Index, free U.S. dollar returns, and gold coin returns. The results are presented in Table (17). Given p-values less
than 0.01 for all three variables, the stationarity assumption is confirmed at the 99% confidence level.

Table 17. Augmented Dickey-Fuller Unit Root Test for the Study Variables

Variables Test Statistic p-value
Free U.S. dollar -13.2638 <0.01
New gold coin -13.1517 <0.01
Comprehensive Stress Index -6.55522 <0.01

The Granger causality test results are provided in Table (18). Based on these results, a significant one-way causal
relationship from the free foreign exchange market to the Comprehensive Stress Index is observed at the 5% error
level (p-value = 0.02803). This finding indicates that the null hypothesis of no effect of the free foreign exchange
market on the Comprehensive Stress Index is rejected. In other words, changes in the free foreign exchange market
can serve as a predictor of changes in the Comprehensive Stress Index, and shocks and fluctuations in the foreign
exchange market have a significant impact on the SSI. In contrast, no significant causal relationship is observed
between the gold coin market and the SSI in either direction (p-values greater than 0.05). Likewise, causality from

the SSI to the free foreign exchange market is not significant.
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Table 18. Granger Causality Test Results at the 5% Error Level

Direction of Causality Statistic p-value Status

Free FX market — Comprehensive Stress Index 4.8323 0.02803 Significant causality
Comprehensive Stress Index — Free FX market 0.7481 0.3872 Not significant
Gold coin market — Comprehensive Stress Index 0.2315 0.6305 Not significant
Comprehensive Stress Index — Gold coin market 0.3036 0.5817 Not significant

The one-way causal relationship from the foreign exchange market to the Comprehensive Stress Index indicates
the strong influence of exchange rate volatility on the systemic risk of the Tehran Stock Exchange. This may be due
to the Iranian economy’s dependence on foreign currency and its impact on investor expectations. In contrast, the
absence of a significant causal relationship with the gold coin market may result from the distinct nature of that
market (e.g., consumption demand or long-term investment), which exerts less influence on systemic stress in the

stock market.

4. Discussion and Conclusion

The present study set out to design and validate a Comprehensive Stress Index (SSI) tailored to the Tehran Stock
Exchange (TSE) by integrating a tail-risk measure (ACoVaR), dynamic conditional correlations from a DCC-
MGARCH framework, and data-driven weighting through supervised machine learning. The results provide a
multi-dimensional picture of systemic fragility in Iran’s equity market and confirm that the proposed methodology
produces a sensitive, predictive, and macro-financially relevant stress barometer.

A first major finding concerns the statistical soundness of the DCC-MGARCH modeling. The estimated
conditional variance parameters for both market and sectoral indices showed high but stationary persistence, with
alpha and beta summations below unity. This aligns with theoretical expectations that market volatility clusters yet
remains mean-reverting over long horizons [1]. Moreover, the dynamic correlation coefficients were significant and
time-varying, justifying the use of DCC instead of constant-correlation models. Such time-varying dependence is
consistent with evidence that systemic episodes are characterized by sudden correlation spikes across asset classes
[5, 10]. Similar to what has been documented in European and U.S. markets, our findings show that Iranian sectoral
returns become more tightly linked during turbulence, implying latent network contagion effects [3].

Second, the ranking of sectors by systemic risk contributions revealed important structural heterogeneity.
Industries such as automobiles, real estate development, paper, and base metals exhibited the highest average
ACoVaR values, meaning their distress most strongly increases system-wide risk. This mirrors prior Iranian
evidence that sector-specific fragility is unevenly distributed and that shocks in certain manufacturing and
construction-linked segments can destabilize the broader market [19]. The automotive and construction sectors’
prominence also resonates with behavioral and sentiment-driven cycles previously observed in the TSE, where
retail investors’ concentrated activity amplifies price co-movement [15, 18]. Conversely, technology-related sectors
such as IT and pharmaceuticals exhibited lower systemic footprint, a finding coherent with studies on life-cycle
risk which suggest that sectors with more intangible or export-oriented fundamentals may be partially decoupled
from domestic systemic shocks [16].

Third, the machine-learning weighting process added an adaptive dimension to systemic stress aggregation.
Among tested learners, the random forest model produced the lowest forecasting error (MAE and RMSE),
outperforming SVR and ANN while maintaining interpretability through variable-importance metrics. This result

is aligned with broader evidence that ensemble tree methods handle nonlinearity and feature interactions
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effectively when mapping sectoral risk signals to market-level fragility [6, 11, 12]. By deriving weights
endogenously rather than imposing static expert judgments, the SSI captures evolving market structures and
changing systemic footprints —an advantage highlighted by recent studies on ML-enhanced systemic risk measures
[7]. The dominance of the investments and IT sectors in the learned importance scores underscores how financial
intermediaries and technology-linked components can act as informational hubs or liquidity conduits, even if their
tail risk is moderate.

Fourth, the validation tests confirm that the SSI behaves as an effective early-warning tool. Time stability tests
showed that while the index remains interpretable across subsamples, it spikes meaningfully during known high-
stress episodes, including major sanction intensifications and currency market disruptions. These results echo the
behavior of the European CISS and other composite indicators, where structural breaks are not a weakness but a
feature: the index must react disproportionately during true systemic events [3, 5]. The shock analysis demonstrated
that SSI levels are significantly higher during both positive and negative return extremes compared with normal
conditions, confirming its sensitivity to tail events irrespective of direction. Similar symmetric reactions have been
observed in Korean and global markets, where both rallies and crashes can be destabilizing under high leverage
and crowded positioning [4, 21].

Fifth, the predictability test offers practical risk governance implications. The logistic regression shows that one-
day lagged SSI significantly predicts the probability of market shocks, with an area under the ROC curve of 0.80 —
indicative of strong classification ability despite the imbalance of rare events. Such predictive validity echoes earlier
studies on systemic stress indicators’ forecasting power for turmoil and liquidity dry-ups [6, 12]. While the
McFadden R? is modest (7.7%), this is not unusual for binary shock events in unbalanced samples and still signals
incremental predictive value beyond naive baselines [11]. For regulators and risk managers, this means the SSI
could be deployed as part of an early warning system that flags heightened fragility a day before tail returns
materialize.

Perhaps most importantly, the causal analysis establishes a one-way, statistically significant transmission from
the free foreign exchange market to systemic stress. Granger tests revealed that exchange rate shocks precede and
help forecast future movements in the SSI, while no comparable causal effect was found for the gold coin market.
This asymmetric result is highly plausible in the Iranian macro-financial context, where currency depreciation
rapidly impacts corporate cost structures, inflation expectations, and investor behavior [8, 9, 14]. The non-
significance of gold is also consistent with mixed evidence about its hedging role: gold may serve more as a passive
store of value and long-term inflation hedge than a short-horizon systemic transmitter [3]. Together, these results
highlight the primacy of currency monitoring for systemic risk governance in Iran.

International comparisons reinforce this macro-channel interpretation. Studies in emerging and advanced
economies alike confirm that currency crises and policy uncertainty often lead equity fragility, while commodity-
linked hedges like gold respond but do not drive systemic waves [4, 21]. Our findings also mirror regional research
linking sanctions and policy shocks to simultaneous volatility bursts in FX and equities [9]. Thus, the SSI's
sensitivity to exchange-driven turbulence supports its validity and usefulness for local macroprudential oversight.

The study also adds behavioral depth to the systemic risk conversation. Investor overreaction and sentiment
amplification—documented in the TSE through psychological and environmental drivers [15, 18] —likely explain
part of the rapid co-movement observed during FX-induced stress. Combined with firm heterogeneity across life

cycles [16] and policy uncertainty effects on liquidity [23], these findings suggest that the SSI is not just a statistical
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construct but also a mirror of market psychology and institutional fragility. Its design, which incorporates feature
learning and adaptive weights, may therefore be well-suited to track such evolving behavioral patterns.

Despite its contributions, this study has several limitations that should be acknowledged. First, while the DCC-
MGARCH framework captures time-varying volatility and correlations, it remains fundamentally parametric and
may not fully describe extreme tail dependence during severe crises. Nonlinear copula-based approaches or high-
frequency realized covariance measures could provide complementary insights. Second, the machine learning
weighting scheme, although interpretable and predictive, was trained on daily data from a single market and might
not generalize under unprecedented structural breaks or novel policy shocks. Third, the predictability evaluation
focused on one-day-ahead shocks; different horizons and more sophisticated event definitions might yield different
insights about lead times. Additionally, imbalanced data—where extreme shocks are rare relative to normal
states—may limit classification performance despite acceptable AUC metrics. Finally, the SSI was validated
primarily against currency and gold markets; other macro-financial drivers such as oil prices, credit spreads, or
global risk appetite indices were not included but could shape systemic fragility.

Future studies could expand and refine this framework in multiple directions. Extending the analysis to
incorporate high-frequency intraday data would allow capturing faster shock propagation and microstructure-
driven contagion. Incorporating alternative dependence models such as dynamic copulas or realized volatility
networks could better reflect nonlinear tail co-movement. On the machine learning side, exploring gradient
boosting or deep temporal architectures while preserving interpretability could further improve predictive
accuracy and adaptive weighting. Researchers might also examine cross-market contagion channels beyond FX and
gold —such as sovereign bond markets, commodity prices, or crypto-assets —to better understand systemic linkages
in Iran’s evolving financial ecosystem. Comparative studies applying the SSI methodology to other emerging
markets could highlight cross-country resilience patterns and validate transferability. Additionally, integrating
macroeconomic policy indicators and forward-looking expectations measures, such as sentiment extracted from
news or social media, could enhance the index’s forward guidance capabilities.

For practitioners and regulators, the SSI offers a timely, actionable metric for macroprudential surveillance and
market risk management. Exchanges and supervisory authorities could embed the index in dashboards to monitor
fragility and communicate risk to market participants in near real-time. Portfolio managers and institutional
investors can use the SSI as a complementary signal for adjusting hedging strategies and liquidity management
during episodes of heightened systemic stress. Risk committees may also consider SSI thresholds as triggers for
dynamic capital allocation or stress scenario design. Furthermore, the demonstrated causal influence of the FX
market on systemic stress suggests that currency risk monitoring should be integrated into early-warning
frameworks and corporate treasury hedging policies. Finally, embedding such an interpretable machine-learning-
based stress indicator into domestic financial reporting and disclosure standards could help foster transparency,

improve investor confidence, and strengthen systemic resilience.
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